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The book differs from other introduction to mathematical methods 
at this level in several important areas.

First, it does not follow the usual presentation of a description of 
the theory followed by examples and exercises. Rather we use exam-
ples to introduce the theory. This approach is not new; it goes back 
to the methods by which the scribes of Ancient Babylon learned 
mathematics: by example problems and, to judge from the numbers 
of surviving cuneiform tablets, lots of them!

Second, to help the reader digest the text, it is broken up into 
quite short sections (often a page or so) followed by exercises. It may 
be tempting to skip the exercises, (especially if one is used to doing 
only a selection of “end-of-chapter” problems) on the grounds that 
one can get through the book more quickly that way. This is true, in 
the same sense that watching a film speeded up x8 will get to the end 
more quickly, but it will be without much understanding of the plot. 
There are optional additional exercises at the end of each chapter; 
the ones in the text represent the minimum we think you need.

Third, however, we have tried to avoid too many “plug-and-
chug” exercises, that is, exercises which you solve by following the 
text but substituting some different numbers (“pattern matching”). 
These are useful to reinforce memory, but they are not very useful 
to develop or test understanding. Rather, we have tried to make the 
exercises diagnostic in the sense that they do test understanding, 
that is, they test the ability to use what has been learned in a slightly 
different context. An instructor can therefore use these to target 
support for students.

PREFACE
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Finally, and related to the previous point, while we hope it is per-
fectly possible to use this book for self-study, it was not designed for 
that purpose. It is intended for use as a course text. In this regard it 
might be useful to say a little about the background to the writing of 
the book - especially if you are intrigued to know why there are so 
many authors. We would also like to thank contributions to various 
versions of the text from Paul Abel, Mike Dampier, Andrew King, and 
Tim Yeoman.

About forty years ago, it was agreed that our conventional  
presentation of mathematical methods for our physics students -  
lectures, marked homework,and examinations - was not as effective 
as we might have hoped. So, instead of spending lecture time going 
through theory and exercises on the board, we produced a text as, in 
effect, the lecture notes, and refocused class time on weekly work-
shops and small group tutorials. Lectures were restricted to a weekly 
one-hour introduction to the topics for that week. We made the exam-
inations harder, by requiring passes separately in the major topics  
(calculus of one variable, many variables, linear algebra, differen-
tial equations, vector calculus) and the pass rates soared. The initial 
text has been refined over the years (hence the number of authors) 
and this book is another, more outward-facing version, which we are 
pleased to have the opportunity to share with you.

D. J. Raine (lead author) 
and the teaching team:
G. A. Wynn
S. Vaughan
M. Roy
R. O. Davies
E. J. Bunce

Leicester, 2017



CHAPTER 1
DERIVATIVES AND  
INTEGRALS

In this chapter we quickly cover the basic and most commonly 
used rules for differentiation and integration of simple functions 
and combinations of functions. We assume that you are familiar 
with basic algebra, the concept of a function and the idea of a 
limit. Much of the chapter will be familiar to you, but perhaps not 
all of it. And it is important to practice these procedures as much 
as possible – by working through the exercises, even if they look 
simple – to prepare you for the more advanced material that will 
build upon these ideas.

1.1. DEFINITION OF A DERIVATIVE

The derivative of a function is the slope (or gradient) of the 
tangent to the graph of the function at any point; i.e. it is the slope 
approached by the line between two points on the graph as they 
get closer (Figure 1.1). By the “slope” we mean (as usual) the 
change in height divided by the horizontal displacement. To use 
this definition to calculate the slopes of graphs we put it into more 
formal language.
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f (x)

f (x+h) 

f (x)

f (x+h) 
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y
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x+hx
x

y
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FIGURE 1.1: The tangent at an arbitrary point x as the limit of line joining points (x, f(x)) and 
(x + h, f(x + h)) as h gets smaller.

More formally, the derivative of a function y = f(x) is the func-
tion f ′(x) or dy/dx defined by

 
( ) ( ) ( )

h

f x h f x
f x

h0
lim .
→

+ −
=′

 
(1.1)

Equivalently, in a commonly used alternative notation, we write 
dx in place of h to emphasize that we are making a small increment 
in x. We also sometimes write y = y(x) instead of y = f(x) to indicate 
that y is a function of x. The definition is then written

 

( ) ( )
d

d
d→

+ −
=

0
lim .
x

y x x y xdy
dx x

 
(1.2)

For a function of the form y = f(x) we use the notation f ′(x), 
y′ and dy/dx interchangeably. The definition expresses in an exact 
manner the fact that the derivative at x is the slope of the tangent at 
x. In order to use it we need a way of taking the limit. The follow-
ing example shows how this is done for a simple function such as a 
power of x.

Example 1.1 Use the definition from equation (1.1) to find 
f ′(x) if f(x) = x3.

To use the definition we first need f(x + h).

( ) ( )33( ) = , and .f x h x hf x x + = +
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Next, expanding out the parenthetical, we have,

f(x + h) = x3 + 3x2h + 3xh2 + h3,

therefore

( ) ( ) 2 23 3 ,
f x h f x

x xh h
h

+ −
= + +

and

( ) ( )2 2

0
2

2

lim 3 3 ,

3 0 0,
3 .

h
f x x xh h

x

x

→
′ = + +

= + +
=

Exercise 1.1 Use the definition of the derivative to prove that if 
f(x) = x4 then f ′(x) = 4x3.

Example 1.2 Use the definition of a derivative to find the 
derivative of the function y = xn (with n a positive integer).

We begin with the function, and write out the necessary limit

( )
0

, and lim .
n n

n

h

dy x h x
y x

dx h→

+ −
= =

Then, using the binomial expansion (which you may be familiar 
with and will find discussed in Chapter 2),

( ) ( )1 2 21
1 ,

2
n n n n nx h x nx h n n x h h− −+ = + + − + +
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In principle, the derivative of any function can be worked out 
from the definition. In practice, we memorize a few simple examples 
(Section 1.2, Table 1.1) and we learn to build up more complicated 
derivatives from these by a variety of methods (Sections 1.3 – 1.5).

1.2. SOME BASIC DERIVATIVES

You should already know (or be willing to take on trust for the 
present) the derivatives in Table 1.1.

Note: the trigonometric functions are introduced in section A.4 
of Appendix A and the logarithm in Section A.3. Throughout this 
course ln(x) will be written for loge(x), the “natural logarithm.” It 
is common to use log(x) = log10(x), and the use of any other base is 
indicated explicitly, as in log2(x). The derivatives in the table may be 
taken as given.

and

( ) ( )1 2 21
1 ,

2
n n n n nx h x nx h n n x h h− −+ − = + − + +

and so

( ) ( )1 2 21
1 .

2

n n
n n nx h x

nx h n n x h
h

− − −+ −  = + − + +  


Taking the limit as h → 0 gives

( ) 1

0
lim ,

n n
n

h

x h x
nx

h
−

→

+ −
=

and therefore

1.ndy
nx

dx
−=
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TABLE 1.1: Table of some standard derivatives.

Function y(x) Derivative dy/dx

a, a constant 0

x a axa−1

sin(x) cos(x)

cos(x) − sin(x)

tan(x) sec2(x)

ln(x) = loge(x) 1/x

eax aeax

The derivative of the sum of two functions is the sum of the deriv-
atives. This means that if f(x) and g(x) are both functions of x then

 ( )+ = +
dgdfd

f g
dx dx dx

 (1.3)

Exercise 1.2 What is dy/dx if

(i) y = xn + c where c is a constant and n an integer

(ii) y = x−3 + x4

(iii) y = 2sin(x) = sin(x) + sin(x)

(iv) y = sin(x) + cos(x).

We also learn rules for the derivative of a “function of a func-
tion” and of a product, which enable us to construct the derivatives 
of quite complicated expressions from the table without having to 
return to the basic definition.

1.3. “FUNCTION OF A FUNCTION” (CHAIN RULE)

Let’s consider the function y = (1 + 2x)2. This can be thought 
of as the composite of two functions: u = 1 + 2x and y = u2 because 
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y(u(x)) = (1 + 2x)2. What is the relationship between the derivatives 
of these three functions?

( )2 21 2 4 4 1, so 8 4,
dy

y x x x x
dx

= + = + + = +

and, alternatively

( )2 , so 2 2 1 2 ,
dy

y u u x
du

= = = +

1 2 , so 2.
du

u x
dx

= + =

We can see that the following holds:

8x + 4 = 2(1 + 2x) × 2.

And so the relation in this case is

 = .
dy dy du
dx du dx

 (1.4)

This is a general rule that can be proved from the definition of 
a derivative: the derivative of a composite of two functions (a “func-
tion of a function”) is the product of their derivatives. In words: the 
rate of change of y(u(x)) with respect to x is the rate of change of 
y with respect to u times the rate of change of u with respect to x. 
This is usually called the chain rule. So if y = f(u(x)) then we use 
equation (1.4) to compute its derivative as the product of dy/du and 
du/dx.

Example 1.3 If y = cos(x2) what is dy/dx?

We use the chain rule, choosing u to simplify the process. Let 
u = x2 so y = cos(u) and

dy/du = − sin(u),
du/dx = 2x.
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Then, using the chain rule,

( )
( )2

,

sin 2 ,

2 sin .

dy dy du
dx du dx

u x

x x

=

= − ⋅

= −

Alternatively, and more economically, you can write down the 
chain rule directly:

( ){ } ( ) ( )( )
2 2

2 2
2

cos
cos sin 2 .

d xd dx
x x x

dx dx dx
= ⋅ = − ⋅

Exercise 1.3 What is dy/dx if

(i) y = sin(2x)

(ii) y = sin(x2)

(iii) y = cos3(x)

(iv) y = sin(ax)

(v) y = (1 + ax)n

(vi) y = (1 + cos(x))1/2?

Exercise 1.4 What is dy/dx if y = log10(x)? (Hint: see section A.3 
to convert this to the derivative of ln(x) which you can get from 
the table.)

Exercise 1.5 If y = ln[x + (1 + x2)1/2] show that dy/dx = (1 + x2)-1/2. 
(Hint: look at what you are seeking to prove in order to see how to 
simplify your initial expression.)

Exercise 1.6 If y = 1/f(x) show that dy/dx = − f ′/f 2 (where, as 
usual, f ′ stands for df/dx).

Note that it is a matter of choice whether you commit the result 
of this last exercise to memory and use it in specific cases, or use the 
chain rule directly as needed.
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1.4. PRODUCT (AND QUOTIENT) RULE

Suppose now that we want the derivative of a product of two 
functions in 1.1, y(x) = u(x)v(x), say. We might guess that this is 
du d
dx dx

u . You can readily check that this is wrong by applying it to 

a simple example, say y = x2 = x × x. The correct derivative of the 
product of two functions, like y(x) = u(x)v(x), is the sum of two terms 
as follows:

 ( )u
u u u u¢ ¢ ¢= + = +

dy d du
u u u u

dx dx dx
, equivalently .  (1.5)

This is known as the product rule or the Leibniz rule. An alter-
native way to remember the product rule is as follows:

d(uv) = udv + vdu.

Example 1.4 If y = x sin(x), what is dy/dx?

Let u = x, v = sin(x). Then we have that

( )1, cos .
du d

x
dx dx

u
= =

Therefore, by equation (1.5),

( ) ( ) ( ) ( )cos sin 1 cos sin .
dy

x x x x x x
dx

= ⋅ + ⋅ = +

Example 1.5 If y = x2 cos3(2x), what is dy/dx ?

This combines the chain rule and product rule. First break it 
down as a product of two terms y = uv:

u = x2, and v = cos3(2x).

We can see that 

2 .
du

x
dx

=
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If you are familiar with proof by induction, you may like the fol-
lowing example.

As v is a function of a function we use the chain rule to find its 
to find its derivative:

( )

( )

( ) ( )( )
( ) ( )

w w x

dw
x

dx
d d dw

w x
dx dw dx

x x

3

2

2

with cos 2 ,

2sin 2 ,

3 2sin 2 ,

6cos 2 sin 2 .

u

u u

= =

= −

= = −

= −

Putting it all together

( ) ( ) ( )2 2 3

,

6 cos 2 sin 2 2 cos 2 .

dy d du
u

dx dx dx
x x x x x

u u= +

= − +

Eventually you should be able to do some of the intermediate 
steps in your head. So your working might look something like 
this:

 (x2 cos3(2x))′ = x2(cos3(2x)3)′ + 2x cos3(2x), 
= x2 · 3 cos2(2x)(cos(2x))′ + 2x cos3(2x),
= x2 · 3 cos2(2x) sin(2x)(−2) +2x cos3(2x),
= −6x2 cos2(2x) sin(2x) + 2x cos3(2x).

You should cultivate the habit of working like this, resorting to 
introducing u and v explicitly only if you get stuck.

Example 1.6 Assuming that 1
dx
dx

=  prove by induction that 

1
n

ndx
nx

dx
−= when n is a positive integer.
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We start by assuming that for integers up to some n we have 

1
n

ndx
nx

dx
−= . Then

( )
1

11 1 .
n

n n n ndx d
xx x x nx n x

dx dx

+
−= = ⋅ + ⋅ = +

Thus, if the result is true up to n it is true for n + 1. Since it is 
true for n = 1 it is true for all n.

The derivative of the quotient of two functions, like  
y(x) = u(x) / v(x), has its own rule:

 
( )

uu u uu
u u

− ′ ′−′= =2 2, equivalently / .

du d
udy u udx dx u

dx

 
(1.6)

Exercise 1.7 What is dy/dx if

(i) y = x ln(x)

(ii) y = x2 sin(x)

(iii) 
( )x

y
x3

sin 2
= ?  (Treat this as x−3 sin(2x).)

Rather than learning the quotient rule it is often easier to cal-
culate (u/v)′ using the product rule for (uv−1)′. Alternatively, you can 
memorize the rule as

( ) 2 .
vdu udv

d u v
v
−

=

Exercise 1.8

(i) Derive the quotient rule: By putting f = u, g = 1/v show that 
if y = f g = u/v then dy/dx = (u′v′ − v′u)/ v2.

(ii) Use the quotient rule to find dy/dx if y = sin(2x)/x3 and check 
your result with exercise 1.7(iii).

(iii) Use the quotient rule to find dy/dx if y = tan(x). (Recall that 
tan(x) = sin(x)/ cos(x).)
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1.5. IMPLICIT DIFFERENTIATION

Sometimes it is convenient to find the derivative dy/dx from an 
equation like f (y) = g(x) without first solving for y as a function of x. 
This is little more than an application of the chain rule.

Example 1.7 Find dy/dx if y = sin−1(x). (Note that sin−1(x) is the 
inverse sine function, also called arcsin(x); it is not the same as 
1/ sin(x).)

We begin by transforming to something more familiar. If  
y = sin−1(x),

x = sin(y)

and differentiating both sides with respect to x and using the 
chain rule we have

( )( ) ( )( )

( )

1 sin sin ,

cos .

dyd d
y y

dx dx dy

dy
y

dx

= =

=

Rearranging for dy/dx gives

( )
1

.
cos

dy
dx y

=

We want the answer as a function of x so we have to get cos(y) 
in terms of x given that sin(y) = x. We first substitute for cos(y) 
using sin2(y) + cos2(y) = 1. Then,

( )( ) ( )1 2 1 22 2

1 1
.

1 sin 1

dy
dx y x

= =
− −

The method used in this example is referred to as implicit dif-
ferentiation because we differentiate the equation sin(y) = x which 
gives y implicitly as a function of x, in contrast to y = sin−1(x) where y 
is given explicitly.
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1.6. PIECEWISE DIFFERENTIABLE FUNCTIONS

Many useful functions cannot be described fully using a single 
formula, but can be described by different formulae that apply under 
different circumstances. A piecewise function f (x) defines a function 
in terms of formulae that apply for different ranges of x.

Two useful examples of piecewise functions are | x | (pronounced 
“mod x”) and sgn(x) (pronounced “sign x” or “signum x”). We treat 
them in turn.

First, f(x) = |x| = mod(x) is defined by

 ( )
≥

= − <

if 0
if 0.

x x
f y

x x
 (1.7)

This function is plotted in Figure 1.2(a).

Exercise 1.9 Find dy/dx if

(i) y = cos−1(x)

(ii) y = tan−1(x)

(iii) y = xx. (Hint: begin by taking ln of both sides. The answer 
is not x ⋅ xx−1 because the power to which x is raised is not a 
constant!)

Example 1.8 Evaluate

(i) | – 3|

(ii) | 7|

The function is defined separately for x ≥ 0 and x < 0. Since 
– 3 is less than 0, look at the second part of the definition: for 
x = – 3, y = –x gives y = – (– 3) = +3.

Next, we have 7 so we want the definition for x ≥ 0: for x = 7, 
y = +x, so y = +7.

Obviously |x| is simply the absolute value of x (i.e. its magnitude 
regardless of sign), but looking at the definition of a quantity 
will often provide the first step in the answer to a question.
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Second, f(x) = sgn(x). This is defined by

 
( )

+ >
= =
− <

1 if 0
0 if 0

1 if 0.

x

f x x

x

 
(1.8)

This function is plotted in Figure 1.2(b).

x

y = |x|
y

(a)

x

y = sgn( x)

y

(b)

FIGURE 1.2:  (a) The graph of the “modulus” function y = |x|. (b) The “sign” function y = sgn(x).

Exercise 1.10 What is

(i) sgn(1)

(ii) sgn(– 5)?

Example 1.9 If y = sgn(x) what is dy/dx?

Look at the definition. If x > 0, then y = +1, so dy/dx = 0. If 
x < 0, then y = 1, so dy/dx = 0 (because y = constant there). 
The derivative does not exist at x = 0. (The graph, shown 
in Figure 1.2, obviously does not have a tangent there). 
Looking at the graph confirms that the slope is indeed zero 
everywhere else.

Notice that any real number can be expressed as the product of 
its sign and its modulus

x = sgn(x) · |x|.

These two functions f(x) are piecewise linear functions because 
each piece of the graph is a straight line. For mod(x), the graph is 
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continuous at x = 0, but its derivative is discontinuous at this point: 
there is an instantaneous change in the gradient. For sgn(x) the 
graph has a discontinuity at x = 0. We shall discuss continuous and 
discontinuous functions more in section 1.16.

Exercise 1.11 If y = |x| what is dy/dx? (Hint: start from the 
definition of the mod function!)

1.7. HIGHER ORDER DERIVATIVES

Until now we have concentrated on the first derivative of a 
function. We can also define the second derivative, i.e. the gradient 
of the gradient. We use the definition of equation (1.1) but replace 
f(x) with f ′(x):

 ( ) ( ) ( )
→

′ ′+ −
′′ =

0
lim ,
h

f x h f x
f x

h  (1.9)

or, equivalently,

 
( ) ( )2

2 0
lim .
x

y x x y xd y
dx xd

d
d→

′ ′+ −
=  (1.10)

Similarly, we can define the third, fourth and higher order 
derivatives. Often the nth derivative of a function y = f(x) is writ-
ten as f(n)(x), or dny/dxn. Note the parentheses around the super-
script (n) in f(n)(x) to distinguish it from (f(x))n. In practice we 
continue to differentiate the result after each differentiating 
(tidying up the expressions as we go) until we get to the required 
derivative.

Example 1.10 If y = xn calculate d2y/dx2.

If y = xn then dy/dx = nxn–1. Next,

( )
( )

2
1

2

21 .

n

n

d y dyd d
nx

dx dx dx dx
n n x

−

−

 = = 
 

= −
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Exercise 1.12 Find all the derivatives (first, second etc.) of 
the function f(x) = x3 + 6x2 − 9x + 12 until the derivative is 
zero.

1.8. STATIONARY POINTS

A common application of differentiation is to find the maxima or 
minima of functions.

Let y = f(x). A point at which dy/dx = 0 is called a stationary 
point of the function f(x). Equivalently, at a stationary point of f(x), 
we have f ′(x) = 0. See Figure 1.3.

• A stationary point of y = f(x) is a minimum if, at this point, 
d2y/dx2 > 0;

• A stationary point of y = f(x) is a maximum if, at this point, 
d2y/dx2 < 0;

• A stationary point of y = f(x) is (usually) a stationary point of 
inflection if, at this point, d2y/dx2 = 0 (i.e. the derivative has a 
maximum or minimum).

y

x
f’ (x) < 0

f ’ (x) = 0

f ’ (x) = 0

f ’ (x) > 0

(b)

y

x

f’ (x) > 0
f ’’(x) < 0

f ’ (x) > 0
f ’’(x) > 0

f ’’(x) = 0

(c)

y

x

f’ (x) < 0

f ’ (x) = 0

f ’ (x) > 0

(a)

FIGURE 1.3: (a) At a minimum the slope increases as x increases, so d(y′)/dx = y″ > 0. (b) At a 
maximum, the slope decreases as x increases, so y ″ < 0. (c) At a stationary point of inflection 
the slope is zero and the rate of change of slope is zero.

Exercise 1.13 Find derivatives of the first five orders of the func-
tion f(x) = sin(x).
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Example 1.11 Find the stationary points of the function 
y = 2x3 + 3x2 − 36x + 24 and determine whether they are 
maxima, minima, or points of inflection.

We begin by finding dy/dx:

dy/dx = 6x2 + 6x – 36, 
= 6(x2 + x – 6),
= 6(x + 3)(x – 2).

Then we set dy/dx = 0 and solve for x, which gives x = –3 
and x = 2. So the stationary points are x = –3, x = 2. Now we 
calculate the second derivative,

d2y/dx2 = 6(2x + 1),

and evaluate it at the stationary points.

At x = – 3, d2y/dx2 < 0, so this is a maximum, 
 at x = 2, d2y/dx2 > 0, so this is a minimum. 

Exercise 1.14 Find the stationary points of the following func-
tions, and determine whether they are maxima, minima, or points 
of inflection.

(i) y = x5 − 5x

(ii) y = x3 − 3x2 + 3x + 3

In general, if y = f(x) has no stationary points in an interval  
a < x < b then it is either increasing or decreasing. The following 
are the mathematical definitions of increasing and decreasing as 
applied to functions:

• A function is increasing on an interval if f (b) ≥ f (a) for all b > a 
and a, b in the interval.

• A function is decreasing on an interval if f (b) ≤ f (a) for all b > a 
and a, b in the interval.
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Notice that we make no assumption that the functions are 
continuous.

In the case of a continuous function, for which the derivative is 
well defined at each point in an interval, we can use the first deriva-
tive to establish whether the function is increasing or decreasing.

• A function is increasing on an interval if f ′ (x) ≥ 0 for all x in 
the interval.

• A function is decreasing on an interval if f ′(x) ≤ 0 for all x in 
the interval.

Notice here that, mathematically speaking, “increasing” and 
“decreasing” include being constant (i.e. “non-decreasing” and 
“non-increasing,” respectively). If we want to exclude this possibility 
we say a function is strictly increasing (f ′(x) > 0) or strictly decreas-
ing (f ′(x) < 0).

Example 1.12 Show that the function f(x) = x – x 2 is (strictly) 

increasing in 1
20 x< < . Hence show that x  > x 2 for 1

20 x< < .

To find out if the function is increasing (“going uphill”) we look 
at the slope of the tangent: f ′(x) = 1 – 2x. Now we determine 
where the slope is positive. In this case f ′(x) > 0 if 1 – 2x > 0, 
hence the slope is positive over the stated region ( )1

20 x< < . So 
f (x) is increasing for 1

20 x< < ; the function is indeed increasing 
in this interval.

This means that f (b) > f (a) if b > a in this interval. Take a = 0 
and b = x. Then f(x) > f (0) implies x – x2 > 0 – 0, which in turn 
implies x > x2 for 1

20 x< < .

Exercise 1.15 Show that x – sin(x) is (strictly) increasing for x > 0. 
Deduce that sin(x) < x for x > 0.

Exercise 1.16 Show that y = ln(1 + x) – x is (strictly) decreasing for 
x > 0. Deduce that ln(1 + x) < x in this range.
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1.9. INTEGRALS OF ELEMENTARY FUNCTIONS

Integration is the inverse of differentiation. Thus, F(x) is the 
indefinite integral of f(x) if f(x) is the derivative of F(x), i.e.

 ( ) ( ) ( ) ( )
if .

dF x
F x f x dx f x

dx
= =∫  (1.11)

In some books F(x) is called the anti-derivative of f(x).

Example 1.13 Find 3x dx∫
We see that 3 41

4
x dx x c= +∫  (where c is a constant) because 

{ }3 41
4

d
x x c

dx
= + .

Notice the “+c”, where c is any constant. There’s always a “plus c” 
in an indefinite integral because anti-derivatives are defined only up 
to an arbitrary additive constant.

Example 1.14 Find the indefinite integral ∫ bxm dx, where b 
and m are constants.

Begin by writing down a relevant derivative. For y = axn we 
have dy/dx = naxn−1. This gives an integral of the right form,

1 .n nnax dx ax c− = +∫
Compare with the integral we want. Put na = b, n – 1 = m. 
Hence n = m + 1 and a = b/(m + 1), provided m ≠ –1. Then,

 
( )

m mb
bx dx x c

m
1 .

1
+= +

+∫  (for m ≠ −1)
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In practice we memorize this particular result, usually as “add one 
to the power and divide by the new power.” But it is worth remember-
ing the method as well: to find an inverse we can guess a result of the 
right form and then tidy up the details by differentiation and substitu-
tion. (If we guess wrong this won’t work, so it’s a fail-safe method.)

The case m = – 1 is special: we have

1 ln .
dx

x dx x c
x

− = = +∫ ∫
Note the absolute value of x on the right.

Example 1.15 Find the indefinite integral ∫ cos(2x)dx.

Start from a relevant known integral. We know ∫ cos(x)dx = 
sin(x) + c because ( ){ } ( )=sin cos

d
x x

dx
 . Then we check that the 

integral of cos (2x) is proportional to sin(2x). We have,

( ){ } ( )sin 2 2cos 2
d

x x
dx

=

so that,

( ) ( ){ }1
cos 2 sin 2

2
d

x x
dx

=

and therefore,

( ) ( )1
cos 2 sin 2 .

2
x dx x c= +∫

This shows you again how to go about obtaining a new integral 
from a similar known one. But there is no need to go through all the 
working once you know the result. The following exercise can be 
done by comparison with the previous examples. Always check by 
differentiating your answer.

Exercise 1.17 What are the indefinite integrals of 

(i) sin(3x) 

(ii) a/x?
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TABLE 1.2:  Table of some standard integrals; c is an arbitrary constant.

Function y(x) Indefinite integral ∫ ydx

xa

( )
+

+ ≠ −
+

1

1
1

ax c a
a

1/x In(x) + c

sin(x) – cos(x) + c

cos(x) sin(x) + c

tan(x) – ln | cos(x)| + c

ln(x) x ln(x) – x + c

eax a–1e ax + c (a ≠ 0)

f  ′(x)/f(x) ln(f (x)) + c

In order to integrate we need to have memorized a repertoire of 
derivatives and to use systematic guesswork. In practice, the problem 
is often to reduce an integral to some standard form which can be 
looked up in tables of integrals (for example Table 1.2). The examples 
in this chapter give some ways of doing this. The methods of Sections 
1.11 and 1.12 are fundamental in their own right and must be learned.

1.10.  INTEGRALS OF COMBINATIONS OF 
FUNCTIONS

Sometimes integrals which look complex are actually easy to do, 
as long as we know the correct rule or can apply some intuition. For 
example, consider any function f(x). Then,

( )
( )

( )( )ln .
f x

dx f x c
f x

′
= +∫

We can show this must be true by differentiating the right hand 
side using the chain rule. If we let f(x) = u, then
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( )( ){ } ( )( )

( )
( )

ln ln ,

1
,

1
.

d d
f x c u

dx dx
du

u dx

f x
f x

+ =

=

′=

Integration of functions like this – which can be written as a frac-
tion where the numerator is the derivative of the denominator – is 
often called logarithmic integration.

Exercise 1.18 Show that ( ) ( )( ) ( )( ) 11
1

n n
f x f x dx f x c

n
+′ = +

+∫ .

(Remember that to prove a given integral you differentiate the 
anti-derivative.)

1.11. INTEGRATION BY SUBSTITUTION

It is often possible and useful to make a substitution that turns a 
complicated integral into a simpler integral or a “standard” integral 
that is given in charts like Table 1.2. Knowing which substitution to 
use comes with experience and trial and error (and also guesswork!).

Example 1.16 By using a suitable substitution calculate
dx

ax b+∫ .

First, we look for an explicit change of variable such that

1
.

dx dt
ax b a t

=
+∫ ∫

We can then evaluate the integral, ∫ dt / t, using a standard result 
from Table 1.2.

As we want to manipulate the integral into a form where the 
new denominator involves t instead of ax + b, we start by trying 
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t = ax + b. Then dt = adx so dx = dt/a. Next we substitute for x 
and dx to give

1
.

dx dt
ax b a t

=
+∫ ∫

Finally, from the standard integral in Table 1.2, ∫dt/t = ln(t), so 
that

( )

( )

1
ln ,

1
ln .

dx
t c

ax b a

ax b c
a

= +
+

= + +

∫

Example 1.17 Find an explicit change of variable such that

2 2 21
dx dt

K
a x t

=
+ +∫ ∫

where K is a constant.

We want to replace the a2 with a 1 in the denominator, so we 
take out factor a2 to get

2 2 2 2 2

1
.

1
dx dx

a x a x a
=

+ +∫ ∫

We now want t2 for x2/a2 so we try t = x/a, and dt = dx/a or 
dx = a dt. Then

2 2 2 2

2

1
,

1
1

.
1

a dtdx
a x a t

dt
a t

=
+ +

=
+

∫ ∫

∫
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In harder questions where we are not given the answer, the best 
approach is often to try to make the integrand as simple as possible. 
There is usually more than one way to start and, if you do not suc-
ceed the first time, try again!

Exercise 1.19

(i) Find an explicit change of variable that converts

( )2 22

1
into

1
dx dt

b tb x a −− −∫ ∫
(ii) Similarly, simplify

( )( )221

dx

b x a+ +∫

Example 1.18 Find 
( )1 221

dx
I

x
=

−
∫ .

It is tempting to try t2 = 1 – x2 to get rid of the square root. 
Then, by differentiation 2tdt = –2xdx and therefore dx = – tdt/
(1 – t2)1/2. So

( ) ( )1 2 1 22 2

1
.

1 1

t dt dt
I

t t t
= − ⋅ = −

− −
∫ ∫

This is back where we started – so the substitution t2 = 1 – x2 
does not work and we need some other way of removing the 
square root.

If we had 1 – cos2(q) = sin2(q) in the denominator we could 
extract the square root. So we try x = cos(q), then dx = – sin(q) 
dq and we have

( )
( )( )

( )
( )

1 22

sin
,

1 cos

sin
,

sin

,

.

d
I

d

d

c

q q

q

q q
q

q

q

−
= −

−

−
=

= −

= − +

∫

∫

∫
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Finally, we must substitute back for x to give 

I = – cos−1(x) + c

Note that we could have chosen x = sin(q) to get I = sin−1(x) + k 
(where k is a different constant). These two results are the same 
because sin−1(x) = p/2 – cos−1(x).

Exercise 1.20 Find

( )1 22
.

9

dx

x−
∫

Example 1.19 Find I = ∫ sin(x)cos(x) dx.

This will simplify by letting either t = sin(x), then dt = cos(x) dx, 
or t = cos(x), then dt = – sin(x). We can choose either of these. 
Using t = sin(x) we have

( )

2

2

,

1
,

2
1

sin .
2

I tdt

t c

x c

=

= +

= +

∫

With practice we can set out our working more compactly as 
follows:

( ) ( ) ( ) ( )( ) ( )( )21
sin cos sin sin sin .

2
I x x dx x d x x c= = = +∫ ∫

Note that in the final step the integral is of the form 
21

2
f df f c= +∫ , where f here happens to be sin(x).

Exercise 1.21 Find

(i) ∫ sin2(x) cos(x) dx

(ii) ∫ cosn(x) sin(x) dx (n > 0)
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(iii) ∫ cot(x) dx

(iv) ∫ (1 + x2)5x dx

1.12. INTEGRATION BY PARTS

This technique is one of the most important in mathematical 
physics. You will probably have met the basic formula in one of two 
equivalent guises, either 

 ∫ u dv = uv – ∫ v du, (1.12)

or

 ∫ uv′ dx = uv – ∫ vu′ dx. (1.13)

The formula is derived by integrating the rule for differentiating 
a product (Section 1.4). Use whichever form you are familiar with or 
learn whichever you prefer.

Example 1.20 Find I = ∫ x sin(x) dx.

Solution 1: First using equation (1.12): we define u = x, and 
dv = sin(x)dx. Then,

du = dx, 
v = – cos(x).

Next, using equation (1.12), we find 

I = ∫ x d(– cos(x)),
= x(– cos(x)) – ∫ (– cos(x)) dx,
= –x cos(x) + sin(x) + c.

Note: the integration constant in v = ∫ v′dx is arbitrary. It 
will always cancel in the final answer, so we set it to zero for 
convenience.
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Example 1.21 Find I=∫x sin(x) dx.

Solution 2: We could also use equation (1.13). First we define 
u = x, and v′ = sin(x), then,

 u′ = 1, and v′ = – cos(x), 
 I = uv–∫ vu′dx, 
 = x(– cos(x)) – (– cos(x)).1 dx, 
 = –x cos(x) + sin(x) + c. 

Note that we chose u = x because differentiating removes the 
awkward factor x from the integrand. The choice of the correct 
approach is a matter of experience, and trial and error.

Finally, with some experience, we can set out the working more 
compactly,

 I= ∫ x sin(x) dx= – ∫ x d(cos(x)) 
 = – x cos(x) + ∫ cos(x) dx =–x cos(x)+ sin (x) +c. 

Example 1.22 Find ∫ x(1 + x)4 dx using integration by 
parts. 

We have

( ) ( )

( ) ( )

( ) ( )

4 5

5 5

5 6

1
1 1 ,

5
1 1

1 1 ,
5 5
1 1

1 1 .
5 30

x x dx x d x

x x x dx

x x x c

+ = +

= + − +

= + − + +

∫ ∫

∫

Exercise 1.22 Find

(i) ∫ x cos(x) dx

(ii) ∫ ln(x) dx. (Hint: this is ∫ u dv where u = ln(x) and v = x.)
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1.13. INTEGRATION OF RATIONAL FUNCTIONS

A rational function is one of the form

( ) polynomial in
another polynomial in 

x
f x

x
=

You should review Section A.5 on how to divide polynomials and 
Section A.6 on partial fractions.

Example 1.23 Find
3 22 9 4 20

2 5
x x x

I dx
x

+ + −
=

+∫
Divide the numerator by the denominator so as to leave a 
remainder of smaller degree than the denominator.

2 5
2 3 .

2 5
I x x dx

x
 = + − − + ∫

Then, integrating each term,
3

2 5
3 ln 2 5 .

3 2
x

I x x x c= + − − + +

Exercise 1.23 Find 
22 5 10

4
x x

dx
x
− +
−∫

Exercise 1.24 Find the following integrals. (Hint: first express 
the integrand in partial fractions.)

(i) 
( )( )2 1

dx
x x+ −∫

(ii) 
( )( )4 1

x dx
x x+ +∫

(iii) 
( )( )

2 6 4
4 1

x x
dx

x x
+ +

+ +∫
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1.14. DEFINITE INTEGRALS

The definite integral of a function f(x) between limits x = a and 
x = b is evaluated from the indefinite integral F(x) at the limits of 
integration

 ( ) ( ) ( ) [ ] .
b b

aa
f x dx F b F a F= − =∫  

(1.14)

The square brackets on the right are simply a convenient nota-
tion for the difference between the value of the function (in this case 
F(x)) evaluated at each of the two stated values (in this case x = b 
and x = a).

Example 1.24 Find 
1 2

1
x dx

−∫  (the definite integral of x2 

between – 1 and 1) and also find 
1 2

1
x dx

−

∫ .

131 2

1
1

1 1 2
.

3 3 3 3
x

x dx
−

−

   = = − − =     
∫

And similarly
131 2

1
1

1 1 2
.

3 3 3 3
x

x dx
−

−    = = − − = −     
∫

In general

( ) ( ) .
b a

a b
f x dx f x dx= −∫ ∫

Exercise 1.25 Find

(i) 
2 3

1
x dx∫

(ii) ( )
p 2

0
sin .x dx∫ (Hint: ( ) ( )2 1

2sin 1 cos 2x xé ù= -ë û .) 

It is useful to memorize how to find this last integral.
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1.15. AREA UNDER A GRAPH

The area “under” the graph of a function (i.e. the area between 
the graph and the x-axis, with areas below the axis counted as nega-
tive) is given by the definite integral of the function.

x

y y = f (x)

a b

FIGURE 1.4: The definite integral of a 
function between limits a and b gives the 
area “under” the graph of the function.

Example 1.25 Find the area under the graph of sin(x)

(i) between 0 and p
(ii) between 0 and 2p

First

( ) ( ) ( ) ( )
00

sin cos 1 1 2.x dx x= − = − − − − =  ∫
p p

And second, using different limits of integration,

( ) ( ) ( )
2 2

00
sin cos 1 1 0.x dx x= − = − − − =  ∫

Note that the area below the x-axis is counted as negative.

Exercise 1.26 What is the area under the graph of

(i) y = x2 between – 1 and 1

(ii) y = sin2(x) between 0 and p?

Exercise 1.27 Using the result of Example 1.20, find the area 
under the graph of y = x sin(x) between 0 and p.
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1.16.  CONTINUOUS AND DISCONTINUOUS 
FUNCTIONS

A continuous function is one which has a graph with no breaks. 
For example, all elementary functions (polynomials, logarithms, 
trigonometric functions etc.) are continuous (at points where they 
are finite). Formally, f (x) is continuous at x = a if f (x) approaches 
f (a) as x approaches a.

Exercise 1.28

(i) At what point is sgn(x) discontinuous?

(ii) Draw the graph of the function y = sgn(x) between x = –1 
and x = 2.

(iii) Find the area under the graph (as defined in Section 1.15).

x

y = f (x) for x < x1 y = f (x) for x < x1y = g (x) for x ≥ x1 y = h (x) for x ≥ x1

y

x1 x1

(a)

x

y

(b)

FIGURE 1.5: (a) An example of a function defined piecewise that is continuous. In the region 
x < x1, the function is y = f(x), and in the region x ≥ x1 the function is y = g(x). The two functions 
are equal at x1, and continuous across x1. But notice the derivative is not continuous; there is 
a sudden change in the gradient at x1. (b) Now with a discontinuity at the point x1. The graph 
is no longer continuous and the derivative is not defined at x1.

The function sgn(x) (Section 1.6) is an example of a discontinu-
ous function. To integrate a discontinuous function you have to split 
up the range into a union of intervals in which the function is con-
tinuous. This works because of a property of integrals

( ) ( ) ( )
c b c

a a b
f x dx f x dx f x dx= +∫ ∫ ∫

where b is any number. We can break up the range of integration 
into subranges that might be easier to work with.
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Example 1.26 Consider the following piecewise function.

( ) ( )
if 3

exp 5 if 3
C t t

f t
t t

− ≤
=  − >

Find the value of C that makes the function continuous over 
the range t = 0 to t = 10, and then compute the definite integral 
of f(t) over this range. See Figure 1.6.

The change in the definition of the function occurs at t = 3, so 
we examine this point. Inserting this value into each formula 
we get exp(–3/5) and C – 3. If the function is continuous over 
this point, these two must be equal. Therefore

exp(– 3/5) = C – 3 ⇒ C = exp(– 3/5) + 3.

In order to integrate the above function we split the range 
of integration (t = 0 − 10) into two parts, and integrate each 
definition of function within its own range:

( ) ( ) ( )10 3 10

0 0 3
exp 5 .f t dt C t dt t dt= − + −∫ ∫ ∫

We know how to integrate each piece.

( ) ( )

( ) ( ) ( ) ( )

3 32

00

10 10

33

2 3exp 3 5 9 2 6.1464...

exp 5 5exp 5 5 exp 3 5 exp 10 5

2.0674...

C t dt Ct t

t dt t

 − = − = − + = 

   − = − − = − − −   
=

∫
∫

The final result is the sum of these,

( ) ( ) ( )10

0
6.1464... 2.0674... 8.214...f t dt = + =∫

Exercise 1.29 The function f(x) is defined by

( )
1 for 1

2 for 1.
Ax x

f x
x x

+ ≤
=  >

(i) Show that the function is continuous at x = 1 if A = 1
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0 2 4 6 8 10

0
1

2
3

y

t

y = C–t    

y = exp(–t/5) 

t = 3 t = 10

FIGURE 1.6: The piecewise function y = f(t) of example 1.26. The range of integration is split 
into two subranges t = 0 − 3 and t = 3 − 10 and the area under the graph over t = 0 − 10 is 
the sum of these two areas.

(ii) If A = 1

(a) sketch the function f(x) between x = 0 and x = 2

(b) calculate the area under the graph between x = 0 and 
x = 2

Note that if A = 1 in the above exercise then f(x) is continuous at 
x = 1, but its derivative is discontinuous at this point.

1.17. ESTIMATES OF INTEGRALS

Sometimes we cannot evaluate a definite integral explicitly but 
we can estimate it approximately. This is achieved by integrating an 
inequality.

Example 1.27 Show that

( ) ( ) 1
2 2

0

2
sin for 1.

1

p
px x dx p

p
p +

≤ > − 
+∫

The difficult part is usually to find a suitable inequality that can 
be integrated. We do this by trial and error in order to come up 
with an approximate integrand that can be integrated and that 
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Note that the answer is not unique – the usefulness of the 
inequality you obtain will depend on how you choose the inequality 
to integrate.

gives a useful bound. In the present example we could note 
that sin2(x) ≤ 1 and, over the range 0 to 2p, xp ≤ (2p)p so

xp sin2(x) ≤ (2p)p.

Integrating both sides gives

( ) ( ) +

ò
2 12

0
sin 2 .ppx x ≤ π

A better approximation is obtained if we get rid of just the 
troublesome sin2(x) from the integrand using the fact that 
sin2(x) ≤ 1. We then have that

xp sin2(x) ≤ xp

for 0 ≤ x ≤ 2π since sin(x) ≤ 1. Then, integrating both sides,

( )

( )

2 22

0 0

21

0

1

sin

1

2
.

1

p p

p

p

x x dx x dx

x
p

p

π π

+

+

≤

 
≤  + 

π
≤

+

∫ ∫

1.18. DERIVATIVES OF INTEGRALS

Let

( ) ( )
x

a
F x f t dt= ∫

Exercise 1.30 From sin(x) ≤ x for 0 ≤ x ≤ 1 show that

( )( )1

0

1
sin , for 0.

1
p

x dx p
p

≤ ≥
+∫
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where a is a constant. Then, since integration is the inverse of dif-
ferentiation, we have

( ).dF
f x

dx
=

We can check this as follows. First note that ( ) ( ) 0
a

a
F a f t dt= =∫ . 

Then, changing the integration variable from x to t for clarity,

( ) ( ) ( ) ( ) .
x x

a a

dF
dt F x F a F x f t dt

dt
= − = =∫ ∫

Alternatively, it is sometimes useful to go back to the definition 
of the derivative:

( ) ( ) ( ) ( ).
x h

x
F x h F x f t dt hf x

+
+ − = ≈∫

Dividing through by h and taking the limit as h → 0 gives the 
result.

Example 1.28 Let f(t) = t2; then

( ) ( )
3 3

2

0 0
0

,
3 3

x
x x t x

F x f t dt t dt
 

= = = = 
 

∫ ∫
so

{ } ( )3 21
.

3
dF d

x x f x
dx dx

= = =  

It should be obvious that in practice there is no need to carry out 
the integration explicitly to obtain the answer. We’ve just done it to 
show how it would work. Now suppose

( ) ( )
( )g x

a
F x f t dt= ∫

where g(x) is some given function of x. Then,

 ( )( ) .
dgdF

f g x
dx dx

=  (1.15)
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The proof is as follows: F is a function of g(x), i.e. a function of 
a function, so

 ( )( ) .
dg dgdF dF

f g x
dx dg dx dx

= =  (1.16)

Example 1.29 Calculate dF/dx if ( )
2

0

x tF x e dt−= ∫
Note that f(g(x)) is obtained by replacing t in f(t) by g(x) = x2.

We have g(x) = x2, and f(t) = e–t. So
/  = 2 ,

( ( )) = .- 2x

dg dx x

f g x e

Then, using equation (1.15),

2

2 .xdF
e x

dx
◊−=

1.19. REDUCTION FORMULAE

Sometimes an integration cannot be performed directly but can 
be related to a simpler integral which can be evaluated explicitly. 
Reducing the problem in this way leads to a reduction formula.

Exercise 1.31

(i) If ( ) ( )( )
2

1 2

1
ln

xe
F x t dt= ∫ what is dF/dx?

(ii) If ( ) ( )( )2

1 1 2
ln

xe
G x t dt= ∫  what is dG/dx?

(Do not attempt to compute the integrals explicitly! For (ii) begin 
by finding the relation between G and F.)
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The reduction formula (sometimes also called a recurrence rela-
tion) expresses the required integral in terms of a similar integral, 
but with a reduced value of some parameter. Reduction formulae 

Example 1.30 Find ( )
2 3

0
cos dq q∫

p
.

Reduction formulae are usually obtained by integration by 
parts. The key is to write the integrand as a suitable product. 
Here we write (with the benefit of hindsight) cos3(q) = cos2(q) 
cos(q), then

( ) ( ) ( )
2 23 2

0 0
cos cos cos .I d dq q q q q= =∫ ∫

p p

Next, integrate by parts with u = cos2(q) and v′ = cos(q), to give

( ) ( ) ( ) ( )( ) ( )
222

0 0
cos sin 2cos sin sin .dq q q q q q = +  ∫

pp

As cos(π /2) = 0 and sin(0) = 0 we have

( ) ( )
2 2

0
0 2cos sin .dq q q= + ∫

p

Then, removing the sine terms using a standard identity,

( ) ( )( )
( ) ( )

2 2

0

2 2 3

0 0

2cos 1 cos

2 cos 2 cos

d

d d

q q q

q q q q

= −

= −

∫
∫ ∫

p

p p

Notice that the last term above is twice the integral we started 
with, I. So,

( )
2

0
2 cos 2 .I d I

p
q q= −∫

Finally we can collect all the I terms on the left to give a 
reduction formula expressing the integral of cos3(q) in terms 
of the integral of a reduced power (here cos(q)) which we can 
evaluate,

( ) ( )
2 2 3

0 0

2
3 2 cos 2, cos .

3
I d d

p p
q q q q= = ⇒ =∫ ∫
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are very often obtained by integration by parts. You may have to 
experiment a bit to get the integrand in a suitable form. Reduction 
formulae of the form found in Example 1.31 occur in many other 
contexts as a way of specifying an infinite number of terms.

Example 1.31 Let

( )
2 2 1

0
cos , for 1,2,3,...n

nC d n
p

q q−= =∫
Show that for n > 1,

( )
1

2 2
.

2 1n n

n
C C

n −

−
=

−

We begin by splitting the integrand into a product cos2n–2 (q) 
cos(q) so we can use integration by parts. Then we write

( ) ( )q q- ¢= =2 2cos , and cosnu v

Then

( ) ( ) ( )( ) ( )2 32 2 cos sin , and sin ,nu n q q u q−′ = − × − =

( ) ( ) ( ) ( ) ( ) ( )
/2/22 2 2 3

0 0
cos sin 2 2 cos sin sin .n n

nC n dq q q q q q
ππ− − = + −  ∫

Since Cn involves only cos(q) we next remove the sine terms 
using sin2(q) = 1 – cos2(q). Then,

( ) ( ) ( )( )
( ) ( ) ( )

2 2 3 2

0

2 22 3 2 1

0 0

0 2 2 cos 1 cos ,

2 2 cos cos .

n
n

n n

C n d

n d d

p

p p

q q q

q q q q

−

− −

= + − −

 = − −  

∫

∫ ∫
The integrals can now all be written in terms of Cn and Cn–1, 
where Cn–1 is obtained from Cn by replacing n by n – 1. We have

Cn = (2n – 2)Cn – 1 – (2n – 2)Cn.

Exercise 1.32 Use a similar method to find a reduction formula 

for ( )
2 5

0
cos x

p

∫  and hence evaluate the integral.
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Finally, collecting all the Cn terms on the left, we obtain the 
reduction formula or recurrence relation for Cn,

( )
( ) 1

2 2
.

2 1n n

n
C C

n −

−
=

−

Example 1.32 Following from Example 1.31 show that

( )( ) ( )
( )( ) ( )
2 2 2 4 ... 2

.
2 1 2 3 ... 3n

n n
C

n n
− −

=
− −

We begin with

( )
( ) 1

2 2
.

2 1n n

n
C C

n −

−
=

−

Then, replacing n with n – 1,

( )
( )1 2

2 4
,

2 3n n

n
C C

n− −

−
=

−

and comparing these two equations we see that

( )( )
( )( ) 2

2 2 2 4
.

2 1 2 3n n

n n
C C

n n −

− −
=

− −

If we continue until we get C1 on the right hand side, we find 
that ( )( ) ( )

( )( ) ( ) 1

2 2 2 4 ... 2
.

2 1 2 3 ... 3n

n n
C C

n n

− −
=

− −

At this point we can stop because we can integrate C1 explicitly 
and also the reduction formula no longer applies. We have

( )
2

1 0
cos 1C d

p
q q= =∫

and so, as required,

( )( ) ( )
( )( ) ( )
2 2 2 4 ... 2

.
2 1 2 3 ... 3n

n n
C

n n
− −

=
− −



Derivatives and Integrals  •  39

The result of example 1.32 is an explicit expression for the inte-
gral of an odd power of cos(q) which is sometimes useful. You should 
remember that such a formula exists! The formula for the integral of 
an even power in Exercise 1.34 is obtained in exactly the same way. 
Expressions for the integrals of powers of sin(q) can also be found.

Exercise 1.33 Find a reduction formula for ( )
2 7

0
cos x dx∫

p
 and 

hence evaluate the integral.

Exercise 1.34 Let

( )
2 2

0
cos , for 1,2,...n

nD d n
p

q q= =∫
Show that for n > 1,

1

2 1
2n n

n
D D

n −
−

=

and hence that

( )( ) ( )
( )( ) ( )
2 1 2 3 ... 1

.
2 2 2 ... 2 4n

n n
D

n n

− −
=

−
p

Exercise 1.35 The gamma function is defined for positive inte-
ger arguments (n ≥ 1) by

Γ(n) = (n – 1) Γ(n – 1),

with Γ(1) = 1. Show that Γ(n) = (n – 1)(n – 2)(n – 3). . . 1, and 
hence that Γ(6) = 120.

Revision Notes

After completing this chapter you should be able to 

•  Know the derivatives of elementary functions including 
powers as well as log and trigonometric functions

•  Differentiate any combination of elementary functions 
using the chain rule, product rule or by implicit 
differentiation
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Further Questions
The sets of additional questions ending chapters divide into 

two groups. Although they are not necessarily straightforward, the 
first set comprises exercises that usually illustrate single concepts 
or techniques from the text. The second set contains more diffi-
cult problems and requires a degree of insight usually drawing on 
or illustrating a range of ideas, possibly using material from earlier 
chapters.

1.20. EXERCISES

1. A continuous graph y = f(x) consists of the infinite straight 
lines

3 2 for 1
3 4 for 1.
x x

y
x x

− ≥
= − + ≤

Sketch the graph and find a formula, involving modulus 
signs, for f(x).

2. Solve the equation 2x − 4 = |x − 3|.

•  Find and identify the stationary points of a given 
function

•  Recall the integrals of simple functions including 
powers, sin and cos

•  Know the following methods of integration: substitution, 
use of trigonometric identities, partial fractions, 
integration by parts, reduction formulae

•  Calculate the definite integral of a discontinuous function

•  Estimate the value of an integral by integrating an 
inequality

•  Differentiate an integral with respect to a limit

•  Be able to obtain reduction formulae by integration by 
parts
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3. Find the derivatives with respect to x of xx and ( )xxx .

4. Simplify 
5 3 2

2

5 6 10
2

x x x x
x

+ + − −
−

5. Verify that the derivative of the function

( ) 1
2

3
tan

3
t

g t t
t

−= −
+

is equal to 4t4/(1 +t2)(3 +t2)2, and deduce that for t > 0 

(3 + t2)tan−1t > 3t.

6. Show that f(x) = 3x3 − 3x2 + x is an increasing function of x 
and explain why the equation f(x) = 1/2 must have a unique 
solution between x = 0.8 and x = 0.9.

7. Verify that 1 sin 2cos 1
tan

2 cos 5 4cos
d x x
dx x x

− −   =  − −  
.

8. Show that the function f(x) = x3 − 6x2 + 12x − 6 is increasing 
for all real x. For what values of x is its inverse function g (such 
that g(f(x)) = x) defined?

9. Find the stationary points of y = 3x4 − 4x3 − 72x2 + 1 and 
determine whether they are maxima, minima, or points of 
inflection.

10. Verify that if the approximate integration formula

( ) ( ) ( ) ( )
1

1

1
1 0 1f x dx f f f

m−
 ≈ − + λ + ∫

 gives the correct answer when f is a constant then  
m = 1 + λ/2, and that if it also gives the correct answer when 
f(x) = x2 then λ = 4 and m = 3.

11. Find the function the derivative of which is 2/(1 − 6x + 
11x2–6x3) and which vanishes when x = 2/3.

12. Find ( )422 1 x xdx+∫ .

13. With the help of suitable changes of variables, find

 (i) ( )2 35 32 5x x dx−∫
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 (ii) ( )1 22 1x x dx−∫
 (iii) 

3

2

sin cos
1 cos

x x
dx

x+∫
 (iv) 

1

2

tan
1

x
dx

x

−

+∫

 (v) 
11

8 43 2
x

dx
x x+ +∫

14.  Find 2 3 4 3 .
dx

x x−∫
15.  Indicating the method used, obtain the values A = 1, B = 2 

for the constants in the partial fraction identity

 ( ) ( )
( )( )

5
, where .

6 7 6 7
A B x

f x f x
x x x x

−
= + =

− − − −

 At which points P, Q does the curve y = f(x) meet the axes 
0x, 0y? Show that the area of the region bounded by OP, 
OQ and the arc PQ of the curve is ln(49/24).

16. In the partial fraction expression

( )( )
2

,
1 1 3 1 1 3

t A B
t t t t

= +
+ + + +

 you are given that A = 1; find the value of B. Hence show 
that

( )( )
21

2 20

2
.

4 3 31 1 3
t

dt
t t

= −
+ +∫

p p

17. Use integration by parts to show that

,u u uue du ue e C= − +∫
 (C an arbitrary constant) and with the help of a suitable 

change of variable find ( ) ( )sin

0
sin 2te t dt

q

∫ .

18. With the help of an integration by parts, show that

( )
0

cos 2.x x dx = −∫
p
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19. Use integration by parts to show that

( ) ( )( ) 2 21
2 ln ln

2
s s ds s s s C= − +∫

 (C a constant) and with the help of a suitable change of 
variable deduce that

( ) ( )( )2

4

1 2
sin 2 ln sin ln .

4
t t dt

e
 =  
 ∫

p

p

20. Show that ( )( )
2
ln cos 1.

y
d y y  =  ∫

p

p p

21. It is known that

( )( ) ( ) ( )2 2

4
1 11 1 1

x A B C
x xx x x

= + +
+ −+ − −

 where A, B and C are constants. By multiplying both sides 
by x + 1 and then putting x = −1 in the resulting equation 
show that A = −1. Similarly, show that B = 2. Finally, by 
putting x = 0 in the original equation, or otherwise, obtain 
the value of C.

22. Find the range of values of x for which 2
2

1 1
1

1 2
x

x
≤ −

+
 and 

by integrating the inequality over this range deduce that 
10
3

≤p .

23. A continuous function f(x) is defined by

( ) ( )2

3 2

1 for 1
4 5 for 1.

x x
f x

x x x C x

 − ≤= 
− + − + >

 Find the value of the constant C and show that f(x) is dif-
ferentiable at x = 1.

24. Given that the sequence an is generated by the recurrence 
relation

( )( )
( ) 1

1 3
1 !n n

n n
a a

n −

+ −
=

−
 with a0 = 1, find a1, a2, a3, a4 and a2001. Note that 0! = 1 – see 

the discussion of factorials in Section 2.1.
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1.21. PROBLEMS

1. A continuous graph y = f(x) consists of the straight line 
segment joining the points (1, 8) and (2, 1) together with 
infinite straight lines of respective slopes +5 and −5 over 
the intervals ( –∞ , 1) and (2, +∞ ) . Find a formula for f(x) 
of the form f(x) = ±|ax – b|±| cx – d |+h, where a, b, c, d, and 
h are constants.

2. Divide the polynomial x3 –7x2 + 36 by x – 6.
 Let f(x) = (7x2 – 36)1/3. Determine the ranges of values of x 

for which the inequality f(x) > x is true, and state the values 
of x for which f(x) > 6.

 Sketch the graph of y = f(x) for x > 0, indicating in particu-
lar the points at which the graph crosses the x-axis and the 
lines y = x and y = 6.

 Show, on the basis of this graph, that if a sequence of num-
bers x1, x2, x3,... is defined (from a given x1) by xn+1 = f(xn) for 
n = 1, 2,... then for x1 > 6 the sequence (xn) is decreasing, 
with limit 6, while on the other hand if 0 < x1 < 3 then x2 is 
further away from 3 than x1. What happens if 3 < x1 < 6?

3. For y = xex calculate y′, y″ and y(′″). Hence write down a 
formula for the nth derivative y(n).

 Deduce the value of A in the formula for the nth derivative 
of a product

( )( ) ( ) ( )1 ....n n nu u auu u u −= + +′

 If z = x sin(x) what is the value of d8z/dx8 at x = 0?

4. Let ( ) 22 1

0
1 2 k x x

kI x e dx
∞ + − −= +∫ . Find the value of I0, obtain a 

reduction formula for Ik and deduce that I3 = 493.

5. Evaluate 1

20 1
dx
x x+ +∫ . By expanding the integrand, written 

in the form (1 – x)(1 – x3) –1, in a series of powers of x, and 
integrating term by term, show that

1 1 1 1 1
1 ... .

2 4 5 7 8 3 3
− + − + − + =

p
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6. The potential energy of a system is given by

V (x) = x4 – 14x2 + 24x.

 Find and classify the equilibrium points, i.e. stationary 
points of V(x), and sketch the general shape of the graph; 
show that the minimum at x = 2 is not global (i.e. that V(x) 
takes values less than 8). Find an approximate expression 
for V(x) near the point x = 2, as a quadratic in x – 2.

7. A function f(t) is defined by the formula

( )
( )( )

2

2 .
1 2

t
f t

t t
=

+ +

 (a) Obtain an expression for f(t) in the form

( )
( )21 2

A B
f t

t t
= +

+ +

   where A, B are real constants, showing the method 
used. 

 (b) Deduce that for x > –1

( ) ( )
0

ln 1 .
1 2

xx
x f t dt

x
+ − =

+ ∫
 (c)  The left side is therefore positive for x > 0. Deduce 

that ln(7/5) > 1/3, and hence that e < 2.744.

 (d)  By any method, and quoting any standard series you 
may use, find the constant term and coefficients of 
x, x2, x3 in the expansions in ascending powers of x 
for 

 (i)  f(x), (ii) g(x) = ln(1 + x) – x/(1 + x/2), and state 
for what values of x these expansions are valid.

8. Let f(x) be a differentiable function of x increasing on the 
interval a < x < b. What condition is satisfied by the deriva-
tive f ′(x)? If f(x) is an increasing function show that 1/f(x) 

is decreasing, except at points where f(x) = 0. Show that 
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( )
2 1x

f x
x
−

=  is increasing for x ≠ 0 and deduce that 
2 1
x

x −

is decreasing except at x = ±1. Sketch a graph of 2 1
x

x −
. 

Deduce the range (or ranges) of x for which
2 3

1
x

x
x

>
−

.

9. Let ( )
2

0
cosm

mJ dq q= ∫
p

. Calculate the value of J0 

and J1. Writing ( ) ( )
2 1

0
cos sinm

mJ d
p

q q−= ∫ , show that 

2

1
m m

m
J J

m −
−

=  where m is a positive integer. Deduce that

 
2 0 2 1 1

2 1 2 3 1 2 2 2 2
and

2 2 2 2 2 1 2 1 3n n

n n n n
J J J J

n n n n+

− − −
= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅

− + −

 where n is a positive integer, and hence that

( )

2

2

2 1

2.4.6...2 1
.

2 3.5... 2 1 2 1
n

n

Jn
n n J +

 
=  − + 

p

 Show that J2n–1 ≥ J2n ≥ J2n+1 for any n, and use the relation

2 1

2 1

2 1
2

n

n

J n
J n

−

+

+
=

 to deduce that

2 1 2

2 1 2 1

lim lim 1.n n

n n
n n

J J
J J

−

→∞ →∞
+ +

= =

 Hence show that

2 2 4 4 6 2 2 2 2
lim .

2 1 3 3 5 5 2 1 2 1 2 1n

n n n
n n n→∞

− = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − − + 
p

10. Let

( )
1

, 0
1 mn

n mI x x dx= −∫
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 where n and m are positive integers. Show that

, 1, 11n m n m

n
I I

m − +=
+

 and hence that

( ),

! !
.

1 !n m

n m
I

n m
=

+ +

 Verify this formula by direct integration in the case n = 1,  
m = 2.





CHAPTER 2
ELEMENTARY  
FUNCTIONS

In the first part of this chapter we look at the representation of an 
arbitrary function f(x) as a power series, f(x) ≈ a0 + a1x + a2x2 + . . .  
where a0, a1, a2 . . . are constants. We call this representation the 
“expansion” of the function (or more precisely, the power series 
expansion of the function about the point x = 0). The expansion is 
intended to be exact if we include the infinite number of terms of 
the whole series or an approximation if we cut off the series after a 
finite number of terms. Power series expansions are very useful if 
we want to know the form of f(x) for small x, and this is often the 
case in physical problems where systems operate close to equilib-
rium. We shall find that power series expansions are particularly 
useful near to a stationary point or where the solution of a prob-
lem depends on a small parameter. Later on (in Fourier series) we 
shall meet other types of expansion which will be useful for other 
purposes.

In the second part of the chapter we introduce the exponential 
and related functions and their power series expansions. Together 
with polynomials, the trigonometric functions and their inverses 
and combinations, these make up what are called the elementary 
functions.
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2.1. BINOMIAL EXPANSION

You are probably familiar with the fact that a function like  
(1 + x)n, where n is a positive integer, can be expanded in powers of x. 
For example, for n = 1, 2, 3,

(1 + x)1 = 1 + x,

(1 + x)2 = (1 + x)(1 + x) = 1 + 2 x + x 2,

(1 + x)3 = (1 + x)(1 + 2x + x 2) = 1 + 3x + 3x 2 + x 3.

We can see there is a pattern in the terms: there are n + 1 terms 
in the expansion, and there is a symmetry to the coefficients in front 
of each term (e.g. 1, 3, 3, 1 for n = 3).

In fact, the general expression can be written as a sum of n + 1 
terms called the binomial expansion,

( ) ( ) ( )( )2 31 1 2
1 1 . . .

2 1 3 2 1
n nn n n n n

x nx x x x
− − −

+ = + + + + +
⋅ ⋅ ⋅  (2.1)

Example 2.1 Expand (1 + x)5.

We apply the definition of equation (2.1),

( )5 2 2 4 5

2 3 4 5

5 4 5 4 3 5 4 3 2 5 4 3 2 1
1 1 5 ,

2 1 3 2 1 4 3 2 1 5 4 3 2 1
1 5 10 10 5 .

x x x x x x

x x x x x

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
+ = + + + + +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= + + + + +

Example 2.2 Expand (2 + x)5.

To use the definition from equation (2.1) we need to put this 
in the form (1 + . . .)n. We therefore extract the factor 2 to give

Exercise 2.1

(i) Expand (1 + x)7

(ii) Write out the three lowest order terms in the expansion of 
(1 + x)12 
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Example 2.3 Find 5!.

5! = 5 × 4 × 3 × 2 × 1 = 120. 

Example 2.4 Verify that

( ) ( )
( )

!
1 . . . 1

!
n

n n n r
n r

− − + =
−

(2 + x)5 = 25(1 + x/2)5.

We can now use the binomial expansion to write

(2 + x)5 = 25 (1 + 5(x/2) + 10(x/2)2 + 10(x/2)3 + 5(x/2)4 + (x/2)5) 

= 32 + 80x + 80x2 + 40x3 + 10x4 + x5.

Exercise 2.2 Expand

(i) (3 + 2x)4

(ii) (1 + x2)3

(iii) (a + x)n

Factorials
For n a positive integer, we define n! (pronounced “n factorial”) 

as the product

 n! = n × (n – 1) × (n – 2) × · · · × 2 × 1. (2.2)

For n = 0 we define 0! = 1. This definition has no deep meaning; 
0! is simply defined this way for convenience.

Factorials are common in mathematical physics; for example, 
they are heavily used in statistical mechanics. Returning to equation 
(2.1), we can rewrite the denominator of each coefficient: r ⋅ (r – 1) · · ·  
3⋅2⋅1 = r!. Can we find a more compact way to write the numerator?
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We now use factorials to write the binomial expansion  
(Equation 2.1) in a more compact way,

 
( )

( )0

!
1 .

! !

n
n r

r

n
x x

r n r=

+ =
−∑

 
(2.3)

Here the “big sigma” symbol Σ indicates that we sum over all 
terms with an index r running from 0 to n (i.e. we put r = 0, r = 1, . . . ,  
r = n and add the results).

From equation (2.2) we have

n! = n(n – 1) · · · 3 ⋅ 2 ⋅ 1,
and

(n – r)! = (n – r)( n – r – 1) · · · 3 ⋅ 2 ⋅ 1. 

Taking the ratio of these two we have

( )
( )

( )( )
1 . . . 3 2 1!

.
! 1 . . . 3 2 1

n nn
n r n r n r

− ⋅ ⋅
=

− − − − ⋅ ⋅

We can now cancel terms from the right end of the numerator 
and denominator. The terms in the denominator cancel with 
the terms (n – r)·( n – r – 1) · · · 3 ⋅ 2 ⋅ 1 in the numerator, 
leaving (n – r + 1) and larger terms on the top,

( )
( ) ( )!

1 . . . 1 .
!

n
n n n r

n r
= − − +

−

Exercise 2.3 Using the definition from equation (2.3) verify that 
(1 + x)3 = 1 + 3x + 3x2 + x3.

Exercise 2.4 Evaluate 
( )

5!
! 5 !r r−

 for r = 0, 1, 3, 4, 5. Hence write 

out equation (2.3) for n = 5 and compare with Example 2.1.

The coefficients in front of the xr terms, i.e. n!/r!(n – r)!, are the 
binomial coefficients. Sometimes n!/r!(n – r)! is considered as a func-
tion of n and r and is called “binomial n, r” or “n choose r.” There 
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are also other notations that are commonly used for this expression; 

for example, 
n

r
 
 
 

 or nCr mean the same thing. So you might see the 

binomial series written as

( ) ( )
0 0

1 , or 1 .
n n

n nn r r
r

r r

n
x C x x x

r= =

 
+ = + =  

 
∑ ∑

Binomial Series
What happens if n is not a positive integer? We first consider 

the case n = –1. Writing out the binomial series, equation (2.1), with  
n = –1 gives the infinite series:

 
( ) ( )( ) ( )( )( )1 2 31 2 1 2 3
1 1 . . .

2 3 2
x x x x− − − − − −

+ = − + + +
⋅  

(2.4)

 = 1 – x + x2 – x3 + . . . .  (2.5)

This is correct provided |x| < 1 because, then, the right hand side 
is just a geometric series (section A.7) with ratio (–x). If |x| < 1, then 
the left hand side is the correct expression for the sum of an infinite 
geometric series. If |x| > 1 the RHS is the sum (or difference) of ever 
larger terms which grows arbitrarily large in magnitude and so cannot 
equal the LHS, which is a finite number.

In general, the binomial expansion of (1 + x)n is valid when n is 
not a positive integer, and |x| < 1, but will be an infinite series of terms, 
not the finite series of equation (2.1).

 
( ) ( ) ( )( )2 31 1 2
1 1 . . . .

2 1 3 2 1
n n n n n n

x nx x x
− − −

+ = + + + +
⋅ ⋅ ⋅  

(2.6)

Example 2.5 Write down the first three terms of the binomial 
expansion of (1 + 2x)1/2 and state the range of x for which the 
expansion is valid.

Using equation (2.6) we have

 
( ) ( ) ( )1 2 2

1 1
1

1 2 21 2 1 2 2 . . .
2 2!

x x x

 − 
 + = + + +

 
(2.7)



54 • Mathematical Physics

 
21

1 . . . .
2

x x= + − +
 

(2.8)

The expansion is valid for |2x| < 1, i.e. for –1/2 < x < 1/2.

Exercise 2.5 Write down the binomial expansions of the follow-
ing, stating the range of values of x for which each is valid:

(i) (1 – x)–1

(ii) (1 + 3x)–1/2

Exercise 2.6 Use your answer from Exercise 2.5 (i) to obtain the 
expansion

2

2 3 . . . ,
a a ax ax

b x b b b
= + + +

−

valid for |x| < |b|. Use this expansion to show that a radio fre-
quency of 198 (= 200 – 2) kHz corresponds to a wavelength of 
approximately 1515m. (Wavelength=wavespeed/frequency, and 
the speed of radio waves is approximately 3 × 108 m s–1.)

Exercise 2.7 By considering the binomial series expansion of  
(1 + δ)1/3 and then putting δ = x – 1, show that

1 3 25 5 1
9 9 9

x x x≈ + −

near x = 1. Verify that the value obtained when x = 1000/729 dif-
fers from the true value of x1/3 by less than 0.25%.

Exercise 2.8 If d is small compared with |x| and 1, find the expan-
sion (in powers of d) of

( )
( )( )2

3

1 3

x

x

d
d d

+

+ −

to first order and to second order in d.

Use of the binomial expansion to approximate rational expres-
sions containing small quantities is an important tool that is commonly 
used in scientific work.
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2.2. MACLAURIN SERIES

The binomial expansion is a special case of a more general result 
that enables us to represent any well-behaved function as a power 
series.

If f(x) is a well-behaved function, the Maclaurin series of f(x) 
gives an expansion for f(x) as a power series valid for small x,

( ) ( ) ( ) ( ) ( ) ( )21 1
0 0 0 . . . 0 . . . .

2! !
ppf x f xf x f x f

p
′ ′′= + + + + +

  
(2.9)

Here, f ¢(0) stands for f ¢(x) = df/dx evaluated at x = 0; f ″(0) stands 
for f ″(x) = d2f/dx2 evaluated at x = 0; f(p)(0) stands for f(p)(x) = dpf/dxp 
evaluated at x = 0. The series can be written very compactly as

 
( ) ( ) ( )

0

0 .
!

p
p

p

x
f x f

p

∞

=

=∑
 

(2.10)

For sufficiently small x the sum of all the terms after the nth 
is negligibly small compared with the sum of the first n terms. For 
such x we can approximate a function by the first few terms of its 
Maclaurin series.

Example 2.6 Find the first three terms of the Maclaurin series 
of (1 + 2x)1/2.

We have

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

3 2

1 2 0 1,
1

1 2 2 0 1,
2

1
1 2 2 0 1.

2

f x x f

f x x f

f x x f

−

−

= + ⇒ =

′ ′= + ⋅ ⇒ =

′′ ′′= − + ⋅ ⇒ = −

Exercise 2.9 For the function f(x) = (1 + x)1/2, evaluate f(0),  f ¢(0), 

f≤(0), 
5 5

,
4 4

f    ′   
   

f  and 
5
4

f  ′′ 
 

.
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Inserting these into equation (2.9) we get

( )
2

1 21 2 1 . . . .
2
x

x x+ = + − +

Notice that this result agrees with equation (2.8) where we 
expanded (1 + 2x)1/2 using the binomial expansion. Any function 
has only one series expansion about zero. The Maclaurin series 
is just a general way of finding this.

Example 2.7 Find the Maclaurin series for sin(x). Write down 
the general term.

We have
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

sin 0 0,
cos 0 1,

sin 0 0,
cos 0 1.

f x x f

f x x f

f x x f

f x x f

= ⇒ =
′ ′= ⇒ =
′′ ′′= − ⇒ =
′′′ ′′′= − ⇒ = −

Therefore, for the Maclaurin series (Equation 2.9) we get

 
( )

3 3

sin 0 0 . . . . . . .
3! 6
x x

x x x= + + − + = − +
 

(2.11)

The general term is simply the expression for an arbitrary 
power of x in the expansion. From equation (2.11) we can 
see that the sequence of terms in the expansion will look like  
x − x3/3! + x5/5! − x7/7!+. . .

Each successive term in the series changes sign, and only odd 
powers of x appear in the expansion. If p is an integer that labels 
each term in the series (see Equation 2.10), then we can make 
each successive term change sign by including a factor (−1)p, 
and 2p + 1 will count all the odd numbers. This means that the 
general term is (−1)px2p+1/(2p + 1)! where p is an integer. Hence

 
( ) ( )

( )
2 13 1

sin . . . . . .
6 2 1 !

p pxx
x x

p

+−
= − + + +

+  
(2.12)

 

( )
( )

2 1

0

1
.

2 1 !

p p

p

x

p

+∞

=

−
=

+∑
 

(2.13)
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Example 2.8 Find the Maclaurin series for (1 + sin(x))−1/2 up 
to terms of order x2.

Begin by writing out the inner Maclaurin series for sin(x) 
keeping only relevant terms.

(1 + sin(x))−1/2 = [1 + (x − x3/6 + . . .)]−1/2 .

Expand the outer series as far as necessary using the binomial 
form for (1 + x)−1/2

( ) ( )23 3

2

3
1 6 . . . 2 6 . . . . . .

8
1 2 3 8 . . . .

x x x x

x x

= − − + + − + +

= − + +

Exercise 2.10 Show that the next non-zero term of equation  
(2.11) is x5/120.

When we only require the first few terms of the expansion of a 
function of a function it is often easier to combine Maclaurin series 
than to start afresh. In Example 2.8 we find the expansion of a func-
tion, f(x), where this is the case. If we were to try to work out the 
Maclaurin series of this function directly we would, of course, obtain 
exactly the same answer, but it would take much more work.

Exercise 2.11 Obtain the following expansions as Maclaurin 
series and in (i)–(iii) write down the general term

(i) (1 + x)–1 = 1 – x + x2 – . . .,

(ii) cos(x) = 1 – x2/2 + x4/24 + . . .,

(iii) ln(1 + x2) = x2 – x4/2 + x6/3 + . . .,

(iv) (1 + ln(cos(x)))–1 = 1 + x2/2 + . . ..

In Exercise 2.11 the series (i) is correct only for –1 < x < 1, 
whereas the cosine series (ii) (and the sine series also) are valid for all 
values of x (though not very useful for numerical computation if x is 
large). The series (iii) is valid for –1 ≤ x ≤ 1. It is beyond the scope of 
this course to explain how this can be worked out.
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2.3. TAYLOR SERIES

Maclaurin series are valid near x = 0, and enable us to expand a 
function as a series for x near to 0. Suppose we want an approxima-
tion for a function near some other point. For example, we know that 
sin(p/2) = 1 but what is sin(p/2 – d) approximately equal to for small 
d? If we want an expansion near a point x = x0 we use the Taylor series

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
0 0 0 0 0 0 0

1 1
. . . . . . .

2! !
p pf x f x x x f x x x f x x x f x

p
′ ′′= + − + − + + − +

 (2.14)

Here f ¢(x0) stands for f ¢(x) evaluated at x = x0; f ≤(x0) stands for 
f ≤(x) evaluated at x = x0 etc. Note that the Taylor series gives us f(x) as 
a power series in (x − x0). The Maclaurin series is a special case of the 
Taylor series with x0 = 0. By putting x = x0 + d we obtain an equivalent 
form of the Taylor series

( ) ( ) ( ) ( ) ( ) ( )2
0 0 0 0 0

1 1
. . . . . .

2! !
ppf x f x f x f x f x

p
d d d d′ ′′+ = + + + + +

 
(2.15)

which resembles the Maclaurin series with x0 replacing 0, and d 
replacing x. The series can be written compactly as

( ) ( ) ( )0 0
0

.
!

p
p

p

f x f x
p
dd

∞

=

+ =∑

Example 2.9 Find the Taylor series of the function x1/3 about 
the point x0 = 1 up to terms of order (x – 1)2.

We have
( ) ( )

( ) ( )

( ) ( )

1 3
0 0

2 3

5 3

and 1 1,
1 1

1 ,
3 3

2 1 2
1 .

3 3 9

f x x x f x

f x x f

f x x f

−

−

= = ⇒ =

′ ′= ⇒ =

′′ ′′= − ⋅ ⇒ = −

Therefore, for the Taylor series (Equation 2.14) we get

( ) ( )21 3 1 2
1 1 1 . . . .

3 9
x x x= + − − − +

This is just the binomial expansion of (1 + (x – 1))1/3.
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Exercise 2.12 Show that the Taylor series expansion of sin(q) 
about q = p/2 is

( )
2

sin 2 1 . . . ,
2

ddπ + = − +

and hence that ( ) ( )21
sin 85 1 36

2
≈ − π . Verify that the error is 

less than 0.00025%.

Example 2.10 Suppose the potential energy of a certain 
system with one degree of freedom is given as

V(x) = x4 – 8x2.

Sketch a graph of V(x), find and classify the equilibrium points, 
and obtain an approximate expression for V(x) near to the point 
of equilibrium where x > 0.

At equilibrium, by definition V′(x) = 0. We have V(x) = x4 – 8x2, 
so V′(x) = 4x3 – 16x = 0. This has solutions x = 0 and x = ±2 and 
these are the points of equilibrium. Now V″(x) = 12x2 – 16.

Taylor’s Theorem: Loosely speaking, Taylor’s theorem says that 
we can approximate a smooth function (which is infinitely differen-
tiable) at a given point, as an nth order polynomial function of the 
displacement from that point (a Taylor series), and that the remainder 
goes to zero (the approximation converges on the true function) as n 
increases to infinity.

2.4. EQUILIBRIUM POINTS

One of the major applications of the Taylor series is in the study 
of physical systems near points of equilibrium. An equilibrium point 
of a system characterized by a potential energy V(x) is a point at which 
V′(x) = 0. An equilibrium point is stable if it gives a minimum of V(x) 
and unstable if it gives a maximum.
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Note how we find all the stationary (equilibrium) points and then 
consider them one by one. Some may be maxima, hence unstable 
equilibria; some may be minima, hence stable equilibria.

The function V(x) = x4 – 8x2.

•	  At x = 0, V″(0) = –16 < 0, so this is a maximum, hence 
unstable.

•	  At x = +2, V″(2) = 32 > 0, so this is a minimum, hence 
stable.

•	  At x = –2, V″(–2) = 32 > 0, so this is another minimum, 
hence stable.

Near x = +2 the Taylor series for V(x) is

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )

2

2

2

2
2 2 2 2 . . .

2
2

16 2 0 32 . . .
2

16 16 2 .

x
V x V x V V

x
x

x

−
′ ′′= + − + +

−
= − + − ⋅ + +

≈ − + −

Exercise 2.13 Let the potential V(x) be given by

( )
4 3

2 8
.

4 3 3
x x

V x x= + − +

Find and classify the equilibrium points of this potential. By con-
sidering the shape of the graph, show that x = −2 gives a global 
minimum (this means V(x) ≥ V(−2) for every x, not just near  
x = −2) and find an approximate expression for V(x) near this 
point.

−
30

−
10

10

−4 −2 2 4 x

V(x)
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Harmonic Behavior Close to An Equilibrium Point
Near to equilibrium every physical system behaves in an analo-

gous way to a mass on a spring.

For example, for any potential energy V(x), we can show that the 
corresponding force near to a minimum, F = dV/dx, is proportional to 
δ, the distance away from the minimum, i.e. F = −kδ, the same as for 
a mass on a spring.

Close to a minimum, the Taylor series of V(x) cannot contain any 
linear terms, because dV/dx = 0 at the minimum. From the general 
Taylor series,

( ) ( ) ( )

( ) ( )

0 0
0

0 2
0

,
!

,
2

p
p

p

V x f x
p

V x
V x

dd

d

∞

=

+ =

′′
≈ +

∑

where we have neglected higher order terms because these will 
be small if the distance from the minimum, d, is small. Then, the 
potential

( ) ( ) 2
0

1
,

2
V V x kd d= +

where V(x0) and k = V″(x0) are constants. For any physical system 
close to a minimum V(d) ∝ δ2 and the force F = −dV/dx is proportional 
to the distance, F = −kδ.

This means that, close to a minimum in the potential energy, every 
physical system behaves in an analogous way to a harmonic oscillator.

Example 2.11 The Leonard-Jones potential,

( )
12 6

0 0
0 2 ,

x x
V x V

x x

    = −    
     

describes the potential energy of two atoms separated by 
a distance, x. This has a minimum value of −V0 when x = x0.  
Show that, near to x = x0, the restoring force felt by the atoms is 
proportional to the distance, d, from the minimum.
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–0.5V0

0.5V0

–V0

0
x0 1.5x0 2x0

V(x)

x

δ

The Leonard-Jones potential (blue line above) has a minimum 
when the atomic separation is x = x0. If atoms are too close 
together (x < x0), or too far apart (x > x0), their potential energy 
is large (V(x) > −V0).

Close to x = x0 we can expand V(x) as a Taylor series,

( )
( ) ( )
( ) ( )

0 0
12 13 6 7

0 0 0 0 0
12 14 6 8 2

0 0 0 0 0 0 0

12 12 0
156 84 72 .

V x V

V x V x x V x x V x

V x V x x V x x V x V x

− −

− − −

= −
′ ′= − + ⇒ =
′′ ′′= − ⇒ =

Then

( ) 20
0 0 2

0

721
,

2
V

V x V
x

d d
 

+ = − +  
 

and the potential near to the minimum varies quadratically 
(dashed curve above).

The restoring force is F = −dV/dx = −dV/dδ, so

0
2
0

72
.

V
F k

x
d d

 
= − = − 

 

Thus, the force is proportional to the distance from the 
minimum and, close to their equilibrium separation, a pair of 
atoms will behave like a mass on a spring.
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2.5.  DEFINITION OF e x (THE EXPONENTIAL 
FUNCTION)

The number e is defined by the formula

 

1 1 1 1
1 . . .

1! 2! 3! 4!
1 1 0.5 0.166. . . 0.04166. . . . . .

e = + + + + +

= + + + + +  
(2.16)

It can be calculated to any number of decimal places by adding 
together a sufficient number of terms of this infinite series. In fact

e = 2.7182818284590452353602874. . . .

The exponential function is defined as ex (i.e. the number e raised 
to the power x). Often we write exp(x) for ex. Figure 2.1 illustrates the 
fact that ex is an increasing function of x and ex → +∞ as x → +∞, while 
e−x → 0 as x →+∞.

(a)

5
10

15

−4 −2 0 2 4

x

y

y = ex

0.
2

0.
6

1.
0

1 2 3 4 5

x

y

y = e−x

(b)
FIGURE 2.1: The functions (a) ex and (b) e −x .

2.6. THE INVERSE FUNCTION OF e x

Using logarithms to the base e (see section A.3) we have

(i)   eln(x) = x (by the definition of ln(x) as the power to which e 
must be raised to obtain x)

(ii)   ln(ex) = x ln(e) = x (by taking logs) since ln(e) = 1. Therefore 
the function x → ln(x) is the inverse function to x → ex (be-
cause the application of one mapping followed by the other 
brings us back to the starting value – see Section 2.10).
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−
5

−
3

−
1

1

1 2 3

x

y y = ln(x)

FIGURE 2.2: Graph of ln(x). Note that log(x) (for any base) is only defined for x > 0.

2.7. DERIVATIVE OF THE EXPONENTIAL

If we assume that the properties of ln(x) are given we can obtain 
the derivative of ex by implicit differentiation (see Section 1.5). Let  
y = ex, then

ln(y) = x

and so differentiating with respect to x gives

1
1.

dy
y dx

=

Therefore dy/dx = y and

 
{ } .x xd

e e
dx

=
 

(2.17)

In words, the rate of change of ex is ex. This is a fundamental 
result that distinguishes the number e; it is not true if we replace e by 
any other number. (See Exercise 2.17.)

Example 2.12 Find the Maclaurin series for ex.

Let f(x) = ex. We begin by computing f′(x), f″(x) etc. as needed 
for the Maclaurin series.

f(x) = ex ⇒ f (0) = e0 = 1,
f ′(x) = ex ⇒ f ′(0) = e0 = 1,
f ″(x) = ex ⇒ f ″(0) = e0 = 1.

And so the Maclaurin series is
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Equation (2.18) may also be taken as the definition of the  
function ex.

Example 2.13 Find { }5xd
e

dx
.

We use the chain rule. Let y = 5x, then

{ } 55 5 .
y

y y xdyde d
e e e

dx dy dx
= × = ⋅ =

( ) ( ) ( ) ( )
2

0 0 0 . . . .
2!
x

f x f xf f′ ′′= + + +

Therefore

 

2 3

1 . . . . . . .
2! 3! !

n
x x x x

e x
n

= + + + + + +
 

(2.18)

Exercise 2.14 Find e3/2 to two decimal places by summing suf-
ficiently many terms of the Maclaurin series. Why would it be 
impractical to calculate e10 or e−10 by the same method?

Exercise 2.15 From the Maclaurin series for ex verify that 

{ }x xd
e e

dx
= .

Exercise 2.16 Use the chain rule to find dy/dx if

(i) y = eax,

(ii) 
2xy e= ,

(iii)  y = ef(x).

Exercise 2.17 By putting y = ax, taking logs and then differentiat-
ing show that

{ } ( )ln .x xd
a a a

dx
=

So in general
{ }x xd
a a

dx
∝

with equality only if a = e.
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FIGURE 2.3: The function exp(−x2) (solid blue line) together with its Taylor expansion to  
various orders (see Example 2.14). The black dashed line shows the first order  
approximation, and the long dashed grey line shows the Taylor expansion to second order; 
3rd, 4th and 9th order approximations are also shown. Close to x = 1 the expansion is very 
good with just a few terms. For example, the first order (linear) approximation is accurate  
to within 2% for 0.82 < x < 1.12. Further from x = 1 we need to use a higher order expansion 
to give a good approximation to the function.

Example 2.14 Calculate the Taylor expansion of exp(−x2) 
about x = 1 to first and second order.

( ) ( )
( ) ( )
( ) ( )

2

2

2 2

1
0 0

1

2 1

and 1 ,

2 1 2 ,

2 4 1 2 .

x

x

x x

f x e x f x e

f x xe f e

f x e x e f e

− −

− −

− −

= = ⇒ =

′ ′= − ⇒ = −

′′ ′′= − + ⇒ =

Therefore, to first order, the Taylor series for exp(−x2) is

exp(−x2) = e−1 − 2(x − 1)e−1 = e−1(3 − 2x).

To second order, the Taylor series expansion is

exp(−x2) = e−1(1 − 2(x − 1) + (x − 1)2) = e−1(4 − 4x + x2).

A sketch of the function together with its Taylor expansion to 
various orders is shown in Figure 2.3.

Exercise 2.18 Calculate the Taylor series expansion of exp(−x) to 
second order about the point x = 1.
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2.8. INTEGRATION OF EXPONENTIALS

We now know how to find the derivatives of exponential func-
tions. The next step is to use this knowledge to find the integrals of 
exponential functions.

Since
{ },x xd

e e
dx

=

integration of both sides gives

constant.x xe dx e= +∫

Example 2.15 Find I = Ú eax dx where a is a constant.

Put u = ax. Then du = adx and

1 1
,u axI e du e C

a a
= = +∫

where C is a constant.

Exercise 2.19 Find 
2axxe−∫  (Hint: put u = −ax2.)

Note that the indefinite integral 
2xe dx−∫  (without the additional 

factor of x in the integrand) cannot be expressed in terms of elementary 
functions. Do not waste time trying! This is known as the Gaussian inte-
gral and is very important in probability theory and quantum mechanics.

2
4

−2 0 2

x

y

y = cosh(x)

(a)

−
4

−
2

2
4

−3 −2 −1 1 2 3

x

y

y = sinh(x)

(b)

FIGURE 2.4: Graphs of the hyperbolic functions (a) cosh(x) and (b) sinh(x).
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2.9. HYPERBOLIC FUNCTIONS

We define new functions, called hyperbolic functions, as combi-
nations of ex and e−x:

( ) ( )1
cosh ,

2
x xx e e−= +

and
( ) ( )1

sinh ,
2

x xx e e−= −

where sinh is pronounced either “shine” or “sinsh.”

Example 2.16 Show that cosh2(x) − sinh2(x) = 1.

We have

( ) ( ) ( )

( ) ( ) ( )

2
2 2 2

2
2 2 2

1 1
cosh 2 ,

2 4

1 1
sinh 2 .

2 4

x x x x

x x x x

x e e e e

x e e e e

− −

− −

 = + = + +  

 = − = − +  
Hence

( ) ( ) ( ) ( )2 2 1 1
cosh sinh 2 2 1.

4 4
x x− = − − =

(This result should be memorized and can be used without 
proof.)

The hyperbolic functions are useful combinations of exponen-
tials which frequently appear in mathematical physics, for example in 
quantum mechanics and relativity.

The functions cosh(x) and sinh(x) are analogous to cos(x) and 
sin(x) and they satisfy similar identities, which sometimes (but not 
always!) differ by a sign, as in Example 2.16. When we come to discuss 
complex numbers we shall discuss the connection between the trigo-
nometric and hyperbolic functions more thoroughly.

We complete the analogy with trigonometric functions by 
defining
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Example 2.17 Show that ( ) ( )cosh sinh
d

x x
dx

= .

( ){ } ( )cosh sinh .
2 2

x x x xd d e e e e
x x

dx dx

− − + −
= = = 

 

Example 2.18 If y = x2 then x = y1/2 is the inverse function.

( ) ( )
( )

( )
( )

( )
( )

( )
( )

sinh
tanh ,

cosh

1
coth ,

tanh

1
cosech ,

sinh

1
sech .

cosh

x
x

x

x
x

x
x

x
x

=

=

=

=

tanh(x) is often pronounced as “tansh,” cosech(x) as “coshek” and 
sech(x) as “shek.”

Exercise 2.20 Show that 1 − tanh2(x) = sech2(x) and that  
coth2(x) − 1 = cosech2(x).

Exercise 2.21 Show that ( ){ } ( )sinh cosh
d

x x
dx

= .

Exercise 2.22 Show that sinh(x) has the same sign as x for all x 
and hence that cosh(x) has a global minimum at x = 0.

2.10. INVERSE FUNCTIONS

However, because we usually write an independent variable as x, 
we usually say that y = x1/2 is the inverse function to y = x2. (Alterna-
tively, x → x1/2 is the function inverse to x → x2.)
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Note again that sin−1 (x) is not the same as (sin(x))−1.

If y = f(x) then x = f−1(y) is the function inverse to f that associates 
(one or more) values of x with any given y (in the range of f).

–3
–2

–1
1

2
3

–3 –2 –1 1 2

y = f (x) 

3

x

y

(a)

1
2

3
1 2 3

y = f 
–1

(x)   

y = x y

x

(b)

–3 –2 –1
–3

–2
–1

FIGURE 2.5: (a) A graph of a function, y = f(x). (b) The graph of the inverse function y = f−1(x) 
is obtained by reflection in the line y = x.

TABLE 2.1: Table of some standard functions and their inverse functions. The 
third and fourth rows give restrictions on the x and y values for which the inverse  

function y = f  −1(x) is defined.

Function x2 ex sin(x) cos(x) tan(x)

Inverse x1/2 ln(x) sin−1(x) cos−1(x) tan−1(x)

Range of x x ≥ 0 x > 0 −1 ≤ x ≤ 1 −1 ≤ x ≤ 1 −∞ < x < ∞

Range of y y ≥ 0 (none) −π/2 ≤ y ≤ π/2 0 ≤ y ≤ π −π /2 < y < π /2

In both the examples the inverse function is many-valued: for 
y = x2, both y = +x1/2 and y = −x1/2 are inverse functions (for x ≥ 0). 

Often the non-negative square root is intended if we write, say, 2 .  
In example 2.19, for y = sin−1(x) (where x is between −1 and 1), the 
value in the range −p/2 ≤ y ≤ p/2 is often intended, but any of the 
functions sin−1(x) + 2np or (2n + 1)p − sin−1(x), with n an integer, is 
also an inverse to y = sin(x). The other inverse trigonometric functions 
cos−1(x) and tan−1(x) are similarly many-valued. See Table 2.1.

Example 2.19 If y = sin(x) then x = sin−1(y); so y = sin−1(x) is 
the inverse function to y = sin(x). The notation arcsin(x) is also 
used for sin−1(x).
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Example 2.20 Show that ( ) ( )1 2sinh ln 1x x x− = + + .

We need to turn this into a problem about the sinh 
function whose properties we know. So to begin we invert  
y = sinh−1(x). Now we can use the definition of sinh,

x = sinh(y) = (ey − e−y )/2.

We try to turn this into an equation we can solve for y. To begin, 
multiply through by 2ey and rearrange to give

e2y − 2xey − 1 = 0.

This is a quadratic in ey. Let u = ey (which means we are seeking 
y = ln(u)); then,

u2 − 2xu − 1 = 0.

This is a simple quadratic equation that has solutions,

2 1.u x x= ± +

We choose the + sign because otherwise u < 0 and ln(u) does 
not exist. Then, finally,

( )2ln 1 .y x x= + +

2.11. INVERSE HYPERBOLIC FUNCTIONS

Since the sinh and cosh functions are combinations of exponen-
tials, their inverses involve the logarithm.

Exercise 2.23 Find all distinct real solutions of the equation 
tan(3q) = 1 in the range 0 < q < p.

Exercise 2.24 Show that ( ) ( )1 2cosh ln 1x x x− = ± −  and hence, 
or otherwise, show that

( ){ }1

2

1
cosh .

1

d
x

dx x
− = ±

−

Explain the ± signs, with reference to a graph.
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2.12. EXERCISES

1. (a) Use Taylor series to show that

( ) 1 3
cos 61 .

2 360
o ≈ −

p

(b) By regarding 10  as (10.24 + d)1/2 where d = −0.24, 
and using the fact that (10.24)1/2 = 3.2, calculate the ap-
proximate value 3.1625 for 10 . (The correct value is 
3.1622778.)

(c)  By a similar method, show that (2.2)1=3 ª 1.30059.

2. Show that if an angle A is measured in degrees as 90 − d 
where d is small, then

( )
2 2

sin 1 .
64800

A
d

≈ −
p

Revision Notes

After completing this chapter you should be able to

•	  Compute n!

•	  Write down the general coefficient in the binomial 
expansion and appreciate the use of this expansion

•	  Compute Maclaurin and Taylor series for combinations 
of elementary functions

•	  Define the exponential function ex and know its 
properties

•	  Define the hyperbolic functions sinh and cosh and 
derive their properties

•	  Find the inverses of simple trigonometric and hyperbolic 
functions
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3. Show that 
2 31

sin 1 . . .
4 2 62

d dd d
  + = + − − +  

   

p
.

4. By combining known series, find the Taylor series of 

1
1

x
x

+ 
 − 

 about x = 0, and use it to show that ln(1.25) is ap-

proximately equal to 488/2187.

5. Write down the first three terms in the binomial expansion 

of 4 x+ . Use this truncated series to estimate 4.5  and 
calculate the percentage error in your result.

6. Find the first four non-zero terms in the Taylor series of  
(ln x)2 about x = 1.

7. Find the first non-vanishing term of the Taylor series for  
y = sin4(x) near x = 0.

8. Use a Taylor series to show that sin(32o) is approximately 

equal to 1 2
3

2 360
+

p .

9. Write down the series for sin(q) in terms of q and deduce 
the approximate formula

31
sin( ) .

6
q q q≈ +

 By considering the case q = p/6 obtain the estimate 1
3

8
=p .

10. By equating coefficients of xn on both sides of

(1+ x)n(1+ x)n = (1+ x)2n 

 deduce the identity

2

0

2
.

n

r

n n

r n=

   
=   

   
∑

11. Sketch the graph of y = 1 + sin(x) for − p/2 £ x £ p/2 and 
hence that of its inverse function. For what values of the 
variable is the latter defined?
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12. By writing 10x in the form ey evaluate the indefinite  
integral 10 .x dx∫

13. From first principles show that 1 − tanh2(x) = sech2(x) and 
deduce that

coth2(x) − 1 = cosech2(x).

 What is the value of cosh(x) when 3 cosh(x) = 5 sinh(x)?

14. Write down the Maclaurin series for sin(x) and obtain the 
series for cos(x) by differentiation.

 Verify that when the square
3 5 3 5

( . . .) ( . . .)
3! 5! 3! 5!
x x x x

x x− + − × − + −

 is formed and terms of the same degree collected to-
gether, the coefficients of x2 and x4 agree with those 

obtained by using the series for cos(2x) in the formula 

( ) ( )( )2 1
sin 1 cos 2 .

2
x x= −

15. Sketch the graph of ( ) ( )
( )

sinh
cosh

x
f x

x
= . Has f(x) any maxima 

or minima?

16. Define the functions cosh(x) and sinh(x), and deduce that 
each is the derivative of the other and that cosh(0) = 1, 
sinh(0) = 0. Hence obtain the Maclaurin series for cosh(x) 
as

2 4

1
2! 4!
x x

+ +

 and show that

0.1 0.1 2.010008333....e e−+ ≈
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2.13. PROBLEMS

1. From the formula ( )1 1 1
tanh ln( )

2 1
x

x
x

− +
=

−
 deduce that 

( )( )1
2

1
tanh

1
d

x
dx x

− =
−

 and hence show (with the help of an 

integration by parts) that ( )1tanh x dx−∫  can be written as

( ) ( )1 21
tanh ln 1 .

2
x x x C− + − +

2. (a)  Show that the function tanh−1(x) may be written as 

ln 1 ln 1x x+ − −  and that

( ) ( ) ( ) ( )11 2 2tanh 1 and tanh 1 tanh .
d d

x x x x
dx dx

−− = − = −

(b)  Sketch the curves y = tanh(x), y = tanh−1(x),  
y = 1 − tanh−2(x) and y = (1 − x2)−1, indicating any axis 
crossings and the asymptotic behavior for each.

(c)  Show that the curves y = tanh(x) and y = 1 − tanh2(x) 

cross at the point ( )( ) ( )( )ln 2 5 / 2, 5 1 / 2+ −  and by 

examining the limit 
( )

( )
1

121

tanh
lim

1x

x

x

−

−→ −
 or otherwise, that the 

curve y = tanh−1(x) never becomes as large as  
y = (1 − x2)−1.

3. Show that ( ) ( )1 2sinh ln 1x x x− = + +  and hence that

( )1

2

1
sinh .

1

d
x

dx x
− =

+

 Use an integration by parts to show that

( ) ( )1 2sinh sinh 1 .x dx x x x C− = − + +∫
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4. Verify that the following three methods for expanding  

( ) 23t tf t e +=  in a power series

a0 + a1t + a2t2+ . . .

 all yield the same values for a0, a1 and a2.
(i)  Substitute 3t+t2 for x in the series for ex and collect 

powers of t.

(ii) Multiply together the power series for e3t and 
2te .

(iii)  Obtain the Taylor coefficients ( ) ( ) ( )1
0 , 0 , 0

2
f f ' f ''

( ) ( ) ( )1
0 , 0 , 0

2
f f ' f ''  using

f′(t) = (3 + 2t)f(t),  and   f″(t) = (3 + 2t)f′(t) + 2f (t).



CHAPTER 3
FUNCTIONS, LIMITS, 
AND SERIES

In physics we will often describe physical processes or quantities 
in terms of mathematical functions. Understanding the behavior of 
functions is therefore an important part of understanding the phys-
ics. In this chapter we will look at curve sketching, at the symmetry 
of functions, at approximations to functions and, importantly, at 
the asymptotic behavior of a function as some variable tends to a 
limit. We will also introduce the ideas of convergent and divergent 
series.

3.1. CURVE SKETCHING: QUADRATICS

It is often very useful to visualize a function to get an overview of 
its behavior. This is particularly the case when a function f(x) is used 
to describe a physical quantity. One simple way to visualize f(x) is to 
sketch a graph of f(x) against x.

To sketch a quadratic function we need to find its maximum or 
minimum, where it crosses the axes and how it goes to infinity.
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Example 3.1 Find the stationary point and zeros of the 
quadratic y = x2 – 4x + 3 and sketch its graph.

We could find the stationary points by setting dy/dx = 0, and 

find the zeros from the formula ( ) = − ± −  
2 4 / 2x b b ac a . 

Alternatively we can use the following procedure which begins 
by “completing the square”:

y = x2 – 4x + 3 = (x – 2)2 – 1.

This has its smallest value (of −1) at x = 2 (since the smallest 
value of the squared term is 0). So x = 2 gives a minimum. Next 
determine the axis crossings – first the x-axis:

(x − 2)2 − 1 = 0,

⇒ (x − 2)2 = 1,

⇒ x − 2 = ±1.

Hence x = 3 or 1. The graph crosses the y axis when x = 0, 
which gives y = 3. Finally, y → +∞ (where “→” means “tends 
to”) for both large positive and large negative values of x. The 
graph is therefore as shown in the figure.

−
1

1
2

3
4

1 2 3 4

x

y

Exercise 3.1 By following the indicated procedure, sketch the 
graphs of the following, labeling the maximum or minimum and 
axes crossings.

(i) y = −4x2 + 12x − 9

(ii) y = 4x2 − 12x + 10
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3.2.  CURVE SKETCHING: GENERAL 
POLYNOMIALS

A polynomial function of degree n is a function of the form

y = anxn + an−1xn−1 + · · · + a3x3 + a2x2 + a1x + a0,

where an, an−1, . . ., a1, a0 are constant coefficients. An nth degree 
polynomial has at most n roots (values of x where y = 0). Finding 
these can be difficult for n = 3, 4, and there is no general method for 
finding the roots of higher degree polynomials.

Nevertheless, in sketching graphs of any function we usually 
look for:

 • behavior at +∞  and −∞  (this gives us the asymptotes),

 • crossing of axes (y = 0, x = 0),

 • maxima and minima (dy/dx = 0; d2y/dx2 < 0 or > 0),

 • points of inflection (d2y/dx2 = 0).

Example 3.2 Sketch the graph of the cubic polynomial  
y = 4x3 − 3x.

First, the asymptotes: when |x| is large 4x3 >> 3x so we can 
neglect the 3x in comparison with 4x3. Then, for large |x|, y 
varies like 4x3. This means as x →  +∞ , y also tends to +∞ ,  and 
as x →  −∞ , y also tends to −∞  .

Now for the x-axis crossing. We see y = 0 when x = 0 or 
= ± 3 / 2x .

Next to find the maxima and minima:

dy/dx = 12x2 − 3 = 0
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Note that a quadratic has at most two zeros, while a cubic has at 
most three and at least one zero. In general, a polynomial of degree 
n (i.e. having highest order term xn) has at most n zeros; if n is odd 

when x = ±1/2.

To join smoothly onto the curve for x → ±∞, x = −1/2 must 
give a maximum and x = 1/2 a minimum. This can also be 
determined from the sign of d2y/dx2.

Also,

d2y/dx2 = 24x = 0

when x = 0, hence when y = 0. So the origin is a point of 
inflection. Approaching the origin from x < 0 the curve is 
getting steeper; beyond the origin it becomes less steep, i.e. the 
slope gets less negative.

−
3

−
2

−
1

1
2

3

−1.5 −0.5 0.5 1.0 1.5

x

y

Exercise 3.2 Sketch the graphs of the cubic polynomials

(i) y = x3 − 3x2,

(ii) y = x3 − 3x2 + 2.
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it has at least one zero (because a polynomial of odd degree must 
range between −∞ and +∞ and hence must cross zero).

3.3. CURVE SKETCHING: RATIONAL FUNCTIONS

A rational function is a polynomial divided by another polyno-
mial, i.e. a fraction with polynomials as numerator and denominator. 
See Section A.6.

Example 3.3 Sketch the graph of y = 1/x.

First, the behavior at infinity. For large |x|, y tends to zero. For 
small positive x, y → +∞ ,  and for small negative x, y →  −∞ . 
Also, y ≠ 0 for any finite x.

Next, stationary points.

dy/dx = −1/x2 ≠ 0,

for any finite x. And

d2y/dx2 = 2/x3 ≠ 0,

meaning there are no points of inflection. So the graph is as 
shown below.

−
1

1
2

−1 1 2 3

x

y
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Example 3.4 Sketch the graph of y = x/(x – 2).

Asymptotes: since we want to look at large x, write y in a form 
that involves 1/x for large x (which we can then neglect).

1

2

1 2
1

1 2 /
2 4

1 . . .

y
x x

y
x x

−
 = = − −  

= + + +

(using the binomial series; see section 2.1). So y → 1 as |x| → ∞. 
If x is near to 2 then |y| will get very large. But the sign of y 
depends on whether x > 2 or < 2. For x – 2 small and positive,  
y → + ∞; for x – 2 small and negative, y → –∞.

We can see that y = 0 for x = 0, and dy/dx ≠ 0 for any finite x. We 
can also find that d2y/dx2 ≠ 0. So the graph is as shown below.

−
5

5

−1 2 3 4 5

x

y

1

Exercise 3.3 Sketch the graphs of

(i) y = (x – 3)–1,

(ii) y = x + (2/x).
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3.4. GRAPHICAL SOLUTION OF INEQUALITIES

A good starting point when solving an inequality is to sketch the 
form of the curves involved. As we shall show below, the graphi-
cal method is foolproof while, in contrast, there are some pitfalls to 
algebraic methods.

Example 3.5 What is the region determined by the condition  
y > 0, y < 3 – x, y < x?

First we draw the lines y = 0, y = 3 – x, y = x and then shade the 
disallowed regions.

1
2

3

1 2 3

x

y
y = x

y = 3–x

y = 0

It is then easy to see that the permitted region is the interior 

of the triangle with vertices at the points (0, 0),  
 
 

3 3
,

2 2
,  

(3, 0).

Exercise 3.4 What is the region determined by the conditions  
y < 4, y > –x, y > 2x + 1?
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The graphical method is useful because there are some common 
pitfalls associated with trying to solve an inequality algebraically.

If we were to try to solve Example 3.6 algebraically it would 
be tempting to proceed via the following incorrect procedure. We 
require 1/(3 – x) < 1/(x – 1), hence, multiplying through by (x – 1)
(3 – x), we need (x – 1) < (3 – x) or 2x < 4, and so x < 2.

This is wrong because, for x < 1, multiplication by (x – 1) 
multiplies the inequality by a negative number. This reverses the 
sign of the inequality, a fact that has been ignored. This can be 

Example 3.6 For what range(s) of x is 1/(3 – x) < 1/(x – 1)?

First, we let

y1 = 1/(3 – x),

y2 = 1/(x – 1),

then sketch the graphs of y1 and y2.
−

2
−

1
1

2
3

1 2 43

y

x
y = 1/(x−1)y = 1/(3−x) xp

From the graph y1 < y2 for x > 3 and between xp and 1. The 
crossover point is xp, where 1/(3 – xp) = 1/(xp – 1), i.e. xp – 1 = 3 – xp 

 so xp = 2. So 1/(3 – x) < 1/(x – 1) for 1 < x < 2 and x > 3.
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remedied by squaring the multiplier (i.e. multiply through by  
(x – 1)2(3 – x)2), but we recommend that you stick to the graphical 
method.

3.5. THE SYMMETRY OF FUNCTIONS

Symmetry is a very important idea in theoretical physics. For 
example, the symmetries of the laws of physics determine the ele-
mentary particles found in nature. Here we will introduce the idea 
of even and odd functions. As we shall see, we can often use the 
symmetry of a function to make mathematical operations, like inte-
gration, much easier.

Even and Odd Functions
If f(–x) = f(x), the function, f(x), is even. This means that the 

graph of f(x) is symmetric about the y-axis; f(x) = x2 and f(x) = cos(x) 
are examples of even functions.

If g(–x) = –g(x), the function, g(x), is odd. This means that g(x) is 
antisymmetric about the y-axis; g(x) = x3 and g(x)= sin(x) are exam-
ples of odd functions. Notice that the graph of an odd function must 
pass through the origin: g(0) = 0.

A function may be neither even nor odd. For example, both 
h(x) = exp(x) and h(x) = x + cos(x) are functions that are neither 
even nor odd.

It is always possible to write a function as a sum of even and odd 
functions,

h(x) = f(x) + g(x),

Exercise 3.5 Determine where

<
− −

1
.

6 4
x

x x
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where

( ) ( ) ( )( )= + −
1

is even,
2

f x h x h x

and

( ) ( ) ( )( )= − −
1

is odd.
2

g x h x h x

Products of Even and Edd Functions
The product of two even functions is always even. So, because 

f1(x) = x2 and f2(x) = cos(x) are both even, then h(x) = f1(x)f2(x)  
= x2 cos(x) is even.

The product of two odd functions is always even. So, because  
g1(x) = x and g2(x) = sin(x) are both odd, then h(x) = g1(x)g2(x) = x sin(x) 
 is even.

The product of an even function and an odd function is always 
odd. So, because f(x) = x2 is even and g(x) = sin(x) is odd, then  
h(x) = f(x)g(x) = x2 sin(x) is odd.

Integrals of Even and Odd Functions
We can make use of symmetry to simplify the integrals of even 

and odd functions between limits that are symmetric about the ori-
gin. The integral of any odd function g(x) between −a and a is simply 
zero. We can see this graphically in Figure 3.1: the area under the

x

y

a–a

(a)

x

y

a–a

(b)

x

y

(c)

FIGURE 3.1: (a) An example of an odd function, f(x) = sin 2x. (b) An example of an even  
function, f(x) = x2. (c) Two functions, h1(x) = exp(x) (solid line) and h2(x) = x + cos x (dashed 
line) that are neither odd nor even.

Exercise 3.6 Write ex as the sum of an even and an odd function.
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curve between −a and 0 is equal and opposite to the area under the 
curve between 0 and a. For any odd function,

( )
−

=∫ 0.
a

a
g x dx

For any even function we have

( ) ( )
−

=∫ ∫
0

0
.

a

a
f x dx f x dx

Again, this is illustrated graphically in Figure 3.1.

In general,

 
( )

( )

( ) ( )
0

0 if isodd

2 if iseven.

a
a

a

h x
h x dx

h x dx h x−

= 


∫ ∫   
(3.1)

3.6. LIMITS

In Section 3.1 we looked at the asymptotic limits of some sim-
ple functions and introduced the notation “x → a” which is read as  
“x tends to a.” Here we will show how to find the limits of a function 
in some more complicated cases.

Limits by Substitution
Consider the function y = x2. As x tends to 4, for example, then 

y gets and remains arbitrarily close to 16, the value of y when x = 4. 

Exercise 3.7 Examine the following integrals. Decide whether 
the integrand is even or odd and use this to evaluate the definite 
integral.

(i) ( )
−∫
1

1
sinh x dx ,

(ii) ( )
−∫
1

1
cosh x dx .
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We write that as x → 4, y → 16. Equivalently we say that 16 is the 
limit of y as x tends to 4 and write

→ →
= =2

4 4
lim 16 or lim 16.
x x

y x

Exercise 3.8 What is ( )
→ /2
lim sin

x
x

p
?

Example 3.7 If y = 1/x, what is limx → +∞ y?

As x → +∞, y → 0 because as x increases y becomes and 
remains arbitrarily close to 0.

Example 3.8 Find the limit of y = e2+(1/x) as x → +∞.

We have 2+1/x → 2 as x → +∞ since 1/x → 0 from Example 3.7.  
So y → e2 as x → +∞.

Example 3.9 Find the limit of y = 1/x as x → 0.

Here we need to be careful. As x tends to zero through positive 
values (which we write as x → 0+), y increases arbitrarily 

through positive values so 
0

lim
x

y+→
= +∞. But as x tends to 

zero through negative values (which we write as x → 0−), y gets 
increasingly large and negative: so −→

= −∞
0

lim
x

y .

Exercise 3.9 Find the limits of

(i)  y = (x − 3)−1 as x → 3 (consider the two cases x → 3+ and  
x → 3−)

(ii) y = xp as x → +∞ (consider the cases p > 0, p = 0, p < 0  
separately)

(iii) y = x/(x − 3) as x → +∞.
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3.7. INDETERMINATE FORMS

In many cases we cannot evaluate limits by simple substitution 
as we did previously. For example, consider the following limits:

( ) ( ) ( ) ( ) ( ) ( )1/

0 0

sin 1
a lim , b lim ln , c lim , d lim 1 .

x
x

x x xx

x
x x x

x x+→ →+∞ →+∞→

 + 
 

Direct substitution gives the meaningless results 0/0, 0 × (−∞), 
∞0, 1∞, respectively. It is hopeless to try to proceed further like this. 
In particular 0/0 is not 1, but meaningless. And 0 × ∞ is not 0, or ∞, 
or any other number, but meaningless.

Such expressions may nevertheless approach definite limits 
(finite or infinite) − for example, 1, 0, 1, e, respectively, in the 
above four cases. But we must use a different method to evaluate 
these indeterminate limits. One method that sometimes works is 
expansion in series. Often limits can be related to those already 
known. Alternatively, a method that usually works is l’Hôpital’s 
rule.

Example 3.10 Find 
( )

→0

sin
lim
x

x

x
.

Substituting x = 0 we get sin(0)/0 which is indeterminate. To 
work out the limit we expand sin(x) as a series

( ) − +
= = − +

3

2...sin 6 1 ...
6

x
xx x

x x

Putting x = 0 in the resulting series leads to a determinate 
result.

So
( )

0

sin
lim 1.
x

x

x→
=
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This is an important result which should be remembered (and 
can generally be quoted without proof): as x → +∞, ex grows faster 
than any power of x. As a corollary to this result (exercise 3.10) we 
have that, as x → +∞ , e−x decreases faster than any power of x.

Example 3.11 Find 
→+∞
lim

x

nx

e
x

 where n is a positive integer.

This is of the form ∞ /∞, so indeterminate. To work out the 

limit, we expand ex as a series.

( ) ( )

( ) ( )

2 1 1

2 1
1

1 ... ...
2! 1 ! ! 1 !

1
... ...

2! 1 ! ! 1 !

n n n

x

n n

n
n n

x x x x
x

n n ne
x x

x x x
x x

n n n

− +

− −
− −

+ + + + + + +
− +

=

= + + + + + + +
− +

Now take the limit as x → +∞

1
0 0 0 ... 0 ...

!

x

n

e
x n

→ + + + + + +∞ +

The negative powers of x become arbitrarily small, but the 
terms involving positive powers of x become arbitrarily large. 
Therefore the sum tends to

lim .
x

nx

e
x→+∞

= +∞

Exercise 3.10 Show that −
→+∞ =lim 0n x

x x e . (Hint: this is  
(ex/xn)−1.)

Example 3.12 Find ( )
+→0

lim ln
x

x x .

This is indeterminate of the form 0×(−∞). Since we cannot 
expand ln(x) as a series about 0 we try to relate this limit to one 
we know. This we can do by substituting x = e−u

x ln(x) = −e−uu.
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3.8. L’HÔPITAL’S RULE

An alternative method for finding limits that usually works is 
l’Hôpital’s rule:

 
( )
( )

( )
( )0 0

lim lim
x x x x

f x f ' x

g x g' x→ →
=   (3.2)

This is only valid when the limit (on the left) is indetermi-
nate, and both f(x0) and g(x0) are zero, or both are ±∞. Notice 
that to apply the rule we differentiate both f(x) and g(x) and then 
divide f ′(x) by g′(x). This is not the derivative of (f/g). Also, if the 

Then u → +∞ as x → 0+. Therefore

( )
0

lim ln lim

0.

u

x u
x x ue−

→ + →+∞
= −

=

And we used the result of Exercise 3.10 in the last line.

Example 3.13 Find 
→+∞

1/lim x

x
x .

This has the indeterminate form ∞0. Since we cannot expand as 
a series we relate this to a limit we already know. This we can 
do by taking logs.

( ) ( )

1/lim

ln
ln lim .

x

x

x

L x

x
L

x

→+∞

→+∞

=

=

To relate this to example 3.12 let u = 1/x. So u → 0+ as x →+∞.

( )
0

lim ln

0.
u

u u
+→

= −

=

Now we see that ln(L) = 0 which implies L = 1.
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limit on the right is also indeterminate, you may apply the rule 
again.

3.9. LIMITS OF INTEGRALS

Integrals with infinite limits: By definition

( ) ( )lim .
b

a ab
f x dx f x dx

∞

→∞
=∫ ∫

Example 3.14 Find ( )
+→0

lim ln
x

x x  using l’Hôpital’s rule.

To apply l’Hôpital’s rule we have to state the problem in the 

form ( )
+→0

lim
x

f g :

( )
0

ln
lim which is indeterminate

1 /x

x

x+→

−∞
=
∞

Using l’Hôpital’s rule with f(x) = ln(x) and g(x) = 1/x we get

( )( )
( )
( )

20 0

0

ln 1 /
lim lim

1 / 1 /

lim 0.

x x

x

x ' x
x ' x

x

+ +

+

→ →

→

= =
−

= − =

Exercise 3.11 Find

(i) 
( )

→

−
20

1 cos
lim
x

x

x
,

(ii) ( )
→+∞

 + = 
 

lim 1 constant
x

x

a
a

x
,

(iii) 
( )

→+∞

−
3

sin
lim
x

x x

x
.
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An integral that gives a finite answer is said to converge; when the 
integral is not convergent it is said to diverge.

Integrals with infinite integrands: If f(x) becomes infinite at 
x = a we define

( ) ( )lim .
b b

a ll a
f x dx f x dx

+→
=∫ ∫

Exercise 3.12 For which values of the real number a does the 

integral 
∞

∫1
ax dx  converge?

Example 3.15 Evaluate −∫
1 1/3

0
x dx .

We have

1 11/3 1/3

0 0

2/3

0

2/3

0

lim

13
lim

2

3 3
lim

2 2
3

.
2

ll

l

l

x dx x dx

x
l

l

+

+

+

− −

→

→

→

=

 =   

 = − 
 

=

∫ ∫

Exercise 3.13 For what values of a does the integral a∫
1

0
x dx  

converge?

Exercise 3.14 By use of integration by parts evaluate 
∞ −= ∫0

xI xe dx.
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Γ(x), with n replaced by a real variable x, is called the gamma 
function and satisfies the same reduction formula (but the integral 
cannot be evaluated in an elementary manner except when x is an 
integer).

3.10. APPROXIMATION OF FUNCTIONS

Consider the function ( ) ( )−= +
1

cosh
2

x xx e e . As x → +∞, e−x 

becomes negligible compared to ex. Thus cosh(x) behaves like ex for 
large x. Neglecting parts of complicated expressions under certain 
conditions can often simplify calculations enormously, but we need a 
precise rule for what we are allowed to do. To emphasize that a rule 
is involved mathematicians use a special terminology: we say a func-
tion f(x) is asymptotically equivalent to a function g(x) as x → x0, and 
write f ~ g as x → x0, if f and g behave similarly in the following sense:

( ) ( ) ( )
( )0 0as if 1as .

f x
f x g x x x x x

g x
→ → →Definition: 

“f ~ g” is read “f is asymptotically equivalent to g,” but scientists often 
say “f is approximately equal to g” while using the same ~ notation 
and meaning the same thing. This definition encapsulates the idea 
that the difference between the two functions, when x is near x0, is 
vanishingly small, relative to the size of the functions themselves.

Note that this is not the same as taking a limit. For example, as  
x → 0 we have sin(x) → 0 but (as the next example shows) sin(x) ~ x. 
To say this again: “→” and “~” are not the same because the former 
gives a number and the latter a function.

Exercise 3.15 Let

( ) 1

0
, for 1,2,3,...n tn t e dt n

∞ − −Γ = =∫
Use integration by parts to show that Γ(n) = (n − 1) Γ(n − 1) for  
n > 1 and hence deduce that Γ(n) = (n − 1)!.
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More generally we may write down formulae such as  
sin(x) ~ x − x3/6 as x → 0. What is intended is that x − x3/6 is a more 
accurate approximation for sin(x) near x = 0 than x is. More precisely 
sin(x) − x ~ −x3/6 as x → 0.

An approximation frequently useful in applications of math-
ematics is Stirling’s formula

 ! 2 ,
nn

n n
e

 ∼  
 

p   (3.3)

from which follow, with increasing degrees of accuracy,

(i) ln(n!) ~ n ln(n),

(ii) ln(n!) ~ n ln(n) − n,

Example 3.16 Show that sin(x) ~ x as x → 0.

First we look at the definition. We need to verify that

( )sin
1as 0.

x
x

x
→ →

This will be true if

( )
0

sin
lim 1as 0.
x

x
x

x→
→ →

This was proved earlier in Example 3.10.

Exercise 3.16 Verify that sin(x)− x ~ −x3/6.

Exercise 3.17 Use the definition of asymptotic equivalence to 
show that

(i) (ex − 1)−1 ~1/x as x → 0,

(ii) (ex + 1)−1~ e−x as x → +∞,

(iii) (ex + 1)−1− 1 ~ −ex as x → −∞,

(iv) (cosh(x)/ sinh(x)) − 1 ~ 2e−2x as x →+∞.
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(iii) ( ) ( ) ( )! − +

1
ln ln ln

2
n n n n n ,

(iv) ( ) ( ) ( )! 1 1
ln ln ln ln2

2 2
n n n n n p− + + .

The second one is usually sufficient in physics and should be memo-
rized. Note that you cannot get back to equation (3.3) by exponentiating 
(ii), although you can do so from the more accurate form (iv). In general 
asymptotic equivalences do not remain valid when exponentiated.

If we are not given the asymptotic form we proceed by trying to 
identify the leading term, as in the following example.

3.11. SEQUENCES AND SERIES

A sequence is simply an ordered set of numbers, such as  
{2, 4, 6, 8}, which may be finite or infinite. In this example, 6 is 
the third element of the sequence. A series is an unevaluated sum 

Exercise 3.18 Use trial and error on a pocket calculator to deter-
mine how large n must be for formula (ii) to give an answer accurate 
to within 10%. For this value of n, how accurate an estimate does this 
imply for n! itself, and how accurate an estimate does (iv) give for n!?

Example 3.17 Find the asymptotic form for cosh(x) as  
x → +∞.

Identify the dominant term

cosh(x) = (ex + e−x)/2 ~ ex/2 as x → +∞,

since e−x → 0. Check by using the definition

( ) ( )−
−

+
= = + → →∞2cosh

1 1as .
/2

x x
x

x x

e xx
e x

e e

Exercise 3.19 Find the asymptotic form for sinh2(x) as x → +∞.
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of a sequence, in this case 2 + 4 + 6 + 8. The sum of this series is 
20. (See section A.7 for a reminder.) We can find the limit of an 
infinite sequence of numbers from the limit of a “corresponding” 
function.

3.12. INFINITE SERIES

An important application of limits is to series (sums of sequences). 
Given a sequence of numbers, such as {a1, a2, a3, . . . , an, . . .}, the 
new sequence defined by

Example 3.18 Find the limit of the sequence 1/n as n → +∞ 
through positive integer values.

The function 1/x is equal to the sequence for x = 1, 2, . . . . So 
the limit of the sequence is the same as limx→+∞(1/x) = 0. This 
can also be seen directly because 1/n becomes and remains 
arbitrarily close to 0 as n increases through positive integers. 
The next example is less obvious.

Example 3.19 Find the limit of the sequence 1, 21/2, 31/3, . . .

The general term is n1/n. The function x1/x is equal to the 
sequence for x = 1, 2, . . . . So the limit of the sequence is the 

same as 
→+∞

=1lim 1x

x
x  from Example 3.13.

Exercise 3.20 Find the limits as n → +∞ of

(i) ( )−
−2

1
1

n n

n

(ii) 
 + 
 
1

na
n

 (Hint: use the result of exercise 3.11(ii).)
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1 1

2 1 2

3 1 2 3

1

n

n i
i

S a

S a a

S a a a

S a
=

=
= +
= + +

=∑





is the sequence of partial sums. If the sequence of partial sums con-
verges to some limit L, then we say the series converges with sum 
L. If the series of partial sums does not converge, we say the series 
is divergent.

Example 3.20 What is the sum of the series S = 1 + 1/2 + 1/4 
+ 1/8 + . . .?

Imagine trying to construct the sum in an obvious way: we 
start with 1; then add 1/2 to get 1 + 1/2 = 3/2; then add 1/4 to 

get + + =
1 1

1 7 / 4
2 4

 and so on. The sequence S1 = 1, S2 = 3/2,  

S3 = 7/4 . . . has a limit which is the sum of the infinite series. To 
obtain this limit we construct the general term of the sequence 
Sn. This is the sum of the first n terms

1

1
11 1 1 21 ... .

12 4 2 1
2

n

n nS −

−
= + + + + =

−

The expression on the right comes from the formula for the 
sum of a geometric progression with ratio 1/2 (see Section A.7). 
Now to find the limit of the sequence

1
1

2lim lim 2,
1

1
2

n

nn n
S S

→∞ →∞

−
= = =

−
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There are very few series that can be summed in this way 
because we cannot usually find a simple closed form1 for the nth 
partial sum, Sn, from which to obtain the limit. (Note that this 
is not the same thing as a formula for the nth term of the series 
which is often easy!) Instead, we might try to get an approxima-
tion to the sum by summing a sufficiently large finite number 
of terms. For example, an approximate value for the sum of the 
series 1 + 1/2 + 1/4 + 1/8 + . . . obtained by summing the first four 
terms is S  S4 = 15/8 = 1.875 (which is in fact in error by 6.25 %). 
If you add enough terms on your calculator you will end up with 
the value of 2.000. . . . This is not a proof that the sum of the 
series is 2. You have run out of decimal places on your calcula-
tor and you have no proof that the sum of the infinite number of 
small terms you have not yet considered is less than the accuracy 
of your calculator.

Here is another example where your calculator would mani-
festly be useless. Consider the series S = 1 + 1/2 + 1/3 + 1/4 + . . . . 
The first 4 terms give S4 = 2.08. Is this a good approximation? 
The next 4 terms give S8 = 2.7145. . . . What about 12 terms? Or 
100? In fact, the sum creeps up and up very slowly. (The sum of 
the first 100 million terms is less than 20.) We can guess that even 
though each additional term is getting smaller there are so many 
of them that the sum is always growing toward infinity. This is 
true, but you cannot prove it on your calculator. (This will only 
show that the sum is beyond the maximum number your calcula-
tor will store, not that it is beyond any number any calculator can 
store!) The following is a proper proof that the series does not 
have a finite sum.

1A “closed form” expression is one involving a finite number of mathe-
matical operations on the standard functions. This definition is intentionally  
a little vague as the set of allowed functions may vary depending on the 
context.

(since 1/2n → 0 as n → ∞). Thus

1 + 1/2 + 1/4 + . . .  = 2.
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The essence of the proof is to show that the given series is greater 
than a series which is known not to have a finite sum. There is no 
rule for how to do this – just educated guesswork. Here we use the 
trick of bracketing terms together. With a suitable choice of how to 
bracket the terms we have

S = 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + . . .
     = 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + . . .

          ≥ 1 + 1/2 + (1/4 + 1/4) + (1/8 + 1/8 + 1/8 + 1/8) + . . . ,

where the inequality arises because each term in the series has been 
replaced by something equal or smaller. But for the new series we 
can form the partial sums:

1 1 1
1 ,

2 2 2
S > + + + +

which clearly goes on getting bigger and bigger, i.e. the series 
diverges to +∞.

Thus, before we try to approximate a series by summing a 
number of terms, we need to know whether the series does have a 
finite sum (in which case we say the series converges) or whether it 
diverges. Courses on pure mathematics and mathematical reference 
books give a large number of methods for doing this, based essen-
tially on comparison with known series. (The large number of meth-
ods has arisen because often a particular test will be inconclusive; 
one goes through them in order until one finds a test that works.) We 
give an example of comparison in which the bracketing technique 
given above is used to establish convergence.

Example 3.21 Show that S = 1 + 1/22 + 1/32 + 1/42 + . . .  has a 
finite sum.

We are given some help in the statement of the question that 
the series is in fact convergent. We therefore want to bracket 
the terms in such a way that they are smaller than some known 
convergent series. There is no rule for doing this – you just 
have to spot the possibilities. (There is usually more than one.)
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The same method works for the series 1 + 1/2k + 1/3k + . . . 
for any constant k > 1. Henceforth you may generally assume that 

∞

=∑ 1
1 / k

n
n  is convergent for k > 1 and divergent for k ≤ 1. Conver-

gence or divergence of other series can often be settled by compari-
son with one of these.

S = 1 + (1/22 + 1/32) + (1/42 + 1/52 + 1/62 + 1/72) + . . .
   < 1 + (1/22 + 1/22) + (1/42 + 1/42 + 1/42 + 1/42) + . . .

           = 1 + 2/22 + 4/42 + . . .
           = 1 + 1/2 + 1/4 + . . .  = 2.

Therefore the series has a finite sum. In fact S = p2/6 as can be 
shown by the use of Fourier series.

Example 3.22 Determine whether the following two series 
are convergent or divergent:

(i) = + + +
× × ×
2 3 4

...
1 1 2 2 3 3

S

(ii) 
− − −

= + + +
2 2 2 2 2 2

3 3 3

3 2 4 2 5 4
...

1 2 3
S

(i)  The terms in the numerator are growing linearly, 
those in the denominator quadratically, so the series 
looks something like 1/n. So try to prove it diverges by 
comparing with 1/n.

2 3 4
...

1 1 2 2 3 3
1 2 3

...
1 1 2 2 3 3
1 1 1

...
1 2 3

S = + + +
× × ×

> + + +
× × ×

= + +
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Direct comparison of the above kind works only for series of 
positive terms. A series containing both infinitely many positive and 
infinitely many negative terms will certainly be convergent if the 
positive and negative parts are separately convergent. Other series 
such as 1 − 1/2 + 1/3 − 1/4 + . . . , or more exotic examples such as 

2 1 4 3 53 2 5 4 6
. . .

2 1 4 3 5
         − + − + +         
         

, in which both positive and 

negative parts are divergent, cannot be tested in this way. (Although 
they do converge to ln 2  and 0.4456 . . . ,  respectively.)

The given series is therefore greater term by term than a known 
divergent series and hence divergent.

(ii)  The numerator is screaming out to be factorized as a square 
minus a square. So we guess it grows linearly, whereas the 
denominator is cubed. So overall we expect this to look like 
1/n2, hence to converge. However, it’s difficult to see what is 
happening term by term, so we write out the general term.

( ) ( )2 2

3

3

2 3

2 1

2 3

2 3
.

n

n n
a

n
n
n

n n

+ − +
=

+
=

= +

S is the sum of two series each of which is convergent (from 
the discussion following Example 3.21, and since a constant 
multiple of a convergent series is convergent)

2 3

1 1
2 3 .n

n

S a
n n

= = +∑ ∑ ∑

Hence it is convergent.
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Exercise 3.21 Show that the series

1 1 1
...

1 2 2 3 3 4
S = + + +

× × ×

has a finite sum, but the series

1 1 1
...

1 2 3
S = + + +

is divergent. Does the series

2 2 2

1 1 1
1 ...

2 3 4
S = − + − +

converge? (Hint: consider the positive and negative parts sepa-
rately.)

Revision Notes

After completing this chapter you should be able to

•	  Sketch graphs of polynomials and rational functions

•	  Solve inequalities graphically

•	  Write down conditions for a function to be continuous

•	   Identify indeterminate limits and use l’Hôpital’s rule or 
series methods to find them

•	  Define what is meant by convergence of a series

•	   Define asymptotic approximations of functions and 
verify given examples

•	  Calculate integrals over an infinite range as limits
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3.13. EXERCISES

1. Sketch the graph of y = x3 − 13x2 + 40x, indicating its inter-
sections with the axes and any stationary points and their 
nature.

2. Show that the derivative of g(x) = x4 − 4x3 + 4x2 can be writ-
ten as 4x(x − 1)(x − 2), and hence sketch the graph of  
y = g(x), indicating the positions of any maxima or minima.

3. State why it is obvious that x > 3(x − 2)/(x − 4) for all large 
positive values of x. Determine the precise ranges of x 
for which the inequality is true by rewriting it in the form 
(x − A)(x − B)/(x − 4) > 0 and noting where the left side 
changes sign, or otherwise.

4. Sketch the region consisting of the points in the x, y plane 
for which the inequalities |x| ≤ 1 and x ≤ y ≤ 1 are  
simultaneously satisfied, describe its shape and determine 
the vertices.

5. Verify that = + −
+ +

1
1

1
n n

n n
, and hence write 

down a formula for the sum of the first n terms of the series 

+ + +
+ + +



1 1 1
1 2 2 3 3 4

 and deduce that this 

series is divergent. How many terms are needed to give a 
partial sum greater than 10?

6. Use l’Hôpital’s rule or the series for sin(x) to evaluate the 

limit of ( )sin x

x
 as x → 0.

7. Write down a short formula for the sum of the first N terms 
of the infinite series

( )
( )1

sin 1 sin
2 2 1n

n n
n n

∞

=

   − +    +    
∑ p p
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 and hence show that this series is convergent, with  

sum −1
2
p .

8. Show that 
( ) ( )

( )→

+ −
= −20

1 cos 2 2cos
lim 1

sinx

x x

x
 using l’Hôpital’s 

rule.

9. Use l’Hôpitals rule to find the limit of 
( )

−− −
−

2
sin

x xe e x
x x

  

as x → 0.

10. Show that
( ) ( )

2 24

sin cos 2
lim .

16 8x

x x

x→

−
=

−p p p

11. Prove that the series 
1

1 1
2 1 2 1n n n

∞

=

 ⋅ − + 
∑  is convergent.

12. Evaluate the sum 
∞ −
=∑ 1

2 n

n
. Hence show that the series 

∞ −
=∑

2

1
2 n

n
converges.

13. Evaluate the limit of (ex − 1)/x as x → 0. Deduce the asymp-
totic form of ex − 1 as x → 0 . Show that (ea/x − 1)−1 ~ x/a as  
x → ∞.

3.14. PROBLEMS

1. The function

( )
3 2 3 2

2 2

4 1 4
2 4

x x Ax x x
f x

x x x
+ + + + −

= −
+ −

 tends to a finite limit L as x → −2. Show that A = 9/2, find 
L, and also discuss the behavior of f(x) as x → 0+, x → 0−,  
x → 1 and x → ±∞.
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2. Discuss the behavior of
3 2 3 2

2 2

4 2 3 4
3 2 1

x x x x x x
x x x
+ − − + +

−
− + −

 as x → ±1, x → 2 and x → ∞.

3. A function f (z) is defined by the formula

 ( )
4 3

3 2

3 9 10 2
.

3 2
z z z

f z
z z z
− + −

=
− +

  (3.4)

 (a)  Obtain the expression (polynomial plus partial  
fractions)

 ( ) 1 2 3
3

1 2
f z z

z z z
= − − −

− −   (3.5)

 showing the method used. (Do not merely verify that 
(3.4) reduces to (3.5).)

 (b) Assuming that for |z| < 1 (and only then)

21
1 ...;

1
z z

z
= + + +

−

  obtain the terms a−1, a0, a1 in the expression, valid for 
0 < |z| < 1,

( )
1

.n
n

n

f z a z
∞

=−

= ∑

 (c) Show that if 0 < a < b < 1 then

( ) ( )2 2

1
13 1 2ln( ) 2 ln( ) 3 ln( ),

12 1 1
2

b

a

bb b
f z dz b a

a a a

−−
= − − − −

− −
∫

 and state to what extent the result would differ if  
0 < a < 1  <  b or 1  < a < b < 2.

4. From the fact that (cos(x))′ = − sin(x) obtain the  
derivative of sec(x) as sec(x) tan(x), and also write down the 
derivative of tan(x). Derive expressions (in terms of sec(x) 
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and tan(x)) for the second, third, and fourth derivatives 
of sec(x). Hence show that all non-zero coefficients in the 
Maclaurin series for sec(x) are positive, and that this series 
begins

2 45
1 ....

2 24
x x

+ + +

 Deduce a formula of the form

cos(x) + sec(x) − 2 ~ Axp as x → 0.

 where A and p are constants. Show also that the left side 
can be written as

( )

4
24sin ( )

cos

x

x

 and use this to verify your asymptotic formula.

5. It is known that (for x ≠ −1)

 ( )( ) 22

3 2
1 41 4

x A Bx C
x xx x

− +
= +

+ ++ +   
(3.6)

 where A, B, C are constants. Obtain the values of A, B, C by 
the following method.

 (i)  Multiply both sides by x+1; show that substitution of 
x = 1 in the resulting identity gives A = 1.

 (ii)  If f(x) denotes the right hand side of (3.6) show that  
x f(x) → A + B as x → +∞, and hence that A + B = 0.

 (iii)  Finally, show that C can now be found by putting  
x = 0 in (3.6).

6. From the identity

( )

1
1 1

1
1 1 1 1

1
( )

1 1

n n n
n

n n
n n n n

x x x
x

n n n x n

+∞ ∞ ∞ ∞

+
= = = =

= − = −
+ +∑ ∑ ∑ ∑

 (valid for −1 ≤ x < 1), deduce the formula

( )1
1 ( 1)ln 1 x

x
+ − −
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 for the sum of the series on the left. (You may quote the 
Maclaurin series for ln(1 − x).) What is the limit of this 
expression as x → 1 from below?

7. Write down the expansion of cos(q) in powers of q (valid for 
all real q).

 (a)  By considering the identity cos(q) sec(q) = 1, show that 
the first four coefficients in the expansion

sec(q) = a0 + a2q 2 + a4q 4 + a6q 6 + . . .

 are given by a0 = 1, a2 = 1/2, a4 = 5/24, a6 = 61/720.

 (b)  Hence write down the value of ( )( )q
q

2

2 sec
k

k

d
d

 at  

q = 0, for k = 0,1,2,3.

 (c)  Calculate the limit of (sec(q) − 1)/ q 2 as q → 0 both 
from the series and also with the help of l’Hôpital’s 
rule.

8. Write down the power series for ex and deduce the series 
for cosh(x). Hence show that

( )2cosh 1 for 0,xx e x− < >

 and

( )2cosh 2 1 for 0 .xx e x +− − →

 Show also that

( ) ( )
0

1
cosh 1 for 0.

2

X xx dx e X X< + − >∫

 Are these two quantities asymptotically equal as X → 0+?

9. (i)  Write down the expansion of 1/(1 − x) in an infinite 
series of powers of x, and by integration obtain the 
expansion

 ( )
2 3 4

ln 1 ....
2 3 4
x x x

x x− − = + + + +   (3.7)
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 (ii) Derive the inequalities

( )
( )

2 2 3

ln 1 .
2 2 3 1
x x x

x x x
x

+ + < − − < + +
−

 By choosing a suitable x, show that the value of ln(10/9) 

differs from 21/200 by less than 
1

%
3

.

 (iii) Verify that the values for the limit

( )
0

ln 1
lim( )
x

x x

x→

− − −

 obtained from (3.7) and from l’Hôpital’s rule are equal.

10. (i)  It is known that if ∑ na  is a convergent series of 

positive numbers and bn ~ kan as n → ∞ (where k is 

a constant) then ∑ nb  is also convergent. Given that 
∞ −

=∑ 1

p

n
n  (where p is a constant) is convergent if and 

only if p > 1, examine for convergence the series

 (a)
( )+∑ 1

1n n

 (b)
( )+ +

∑ 1

1n n

 (ii)  Find the first four terms in the Maclaurin expansion of 
(1 − x)−1/2, and show that the coefficient an of xn can be 
written as

( )1 3 5 ... 2 1
2 4 6 ... 2

n

n

× × × × −
× × × ×

 and also show (by multiplying numerator and  
denominator by 2 × 4 × 6 × . . .  × 2n) that this is equal 
to (2n)!/22n(n!)2.
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 (iii)  With the help of Stirling’s formula deduce that 

( ) 1 /na np  as n → ∞ and hence the series 
∞

=
∑

0

n
n

n

a x  

is divergent when x = 1.

 (iv)  This series is, however, convergent when x = −1; what 
should be the value S of its sum? Show that one would 

expect over N = 3000 terms to be needed, before the 

partial sum ( )
1

0

1
N

n
n

n

a
−

=

−∑  together with all subsequent 

partial sums, is within 0.01 of S.

11. (a)  Show that ( )1 −− = +∫ x xx e dx xe C  and also find 

( ) −−∫ 1 xx e dx .

 (b) The function f(x) is defined by

( ) ( )
( )

1 for 2,
1 for 2

x

x

x e x
f x

A x e x

− − >=  + <

 and is continuous at x = 2. Show that −= 41
3

A e .

 (c)  Evaluate, for X > 2, the integral ( )∫2
X

f x dx . What is the 

meaning of ( )
∞

∫2 f x dx  and what is its value?

 (d)  Also find the values of ( )∫
2

Y
f x dx  ( Y  < 2) and 

( )
2

−∞∫ f x dx and deduce that ( )
∞ −

−∞
=∫ 28

3
f x dx e .

12. (a)  Find the values of the function (sin(x))/x and its first 
two derivatives at x = 0. Hence or otherwise write down 
the Maclaurin series for (sin(x))/x up to terms  
in x2.

 (b)  What is the ratio of the values of x which make the 
truncated Maclaurin series in part (a) and the original 
function (sin( x)) /x zero? (Use the smallest possible 
absolute value of x in the latter case.)



CHAPTER 4
VECTORS

The physical world (as we perceive it) exists in three spatial dimen-
sions. Physical quantities such as velocities – which have both  
magnitude and direction – need three components for their specifi-
cation. We call these vectors. (In fact, even more than this, a chemi-
cal system, or an economic model may have, say, 20 components; 
such a system can often be represented conveniently by a vector 
in the appropriate number of dimensions (20 in this example): the 
algebra is the same.) You are going to learn to do algebra with vec-
tors (add and multiply them) in a geometrically meaningful way.

The first part of the chapter deals with the algebra and the sec-
ond with the geometrical picture. You can think of this in two ways: 
either that the algebra enables you to do complicated geometrical 
things rather mechanically (by following the algebraic rules), or that 
the geometry enables you to get a picture of the algebra. In either 

A

B

A

B

(a)

A

B
C

D

(b)

FIGURE 4.1: (a) The vectors AB


 and 


BA . (b) The parallelogram law of vector addition.



112 • Mathematical Physics

case you have to learn to switch smoothly between the two methods, 
and this requires practice. Your reward will be command of a math-
ematical tool that pervades physics.

4.1. BASIC PROPERTIES

Definition: A vector is an object with a magnitude and a direction.

Therefore any vector can be represented by a line segment with 
the specified length (or magnitude) and direction. Note that this pic-
ture provides a representation of any physical quantity, for example 
a force, that can be described by a magnitude and direction in space. 
It does not say that a vector is an arrow, only that they behave geo-
metrically in the same way. (Bodies are accelerated by forces, not by 
arrows on a page.) This is important: many physical quantities are 
not represented by spatial arrows (velocities and forces in relativity 
theory, for example).

A line segment with end-points A and B can be written AB


. The 
line segment 



BA  is a vector of the same magnitude but opposite 
direction (indicated by the direction of the arrowhead in Figure 4.1).

Note that vectors as defined here (“free vectors”) do not have 
a specific point of application. So AB



 = −


BA  in Figure 4.1 even 
though the line segments do not lie on one another; indeed all line 
segments of the same magnitude and direction represent the same 
vector.

Conversely, we can place the line segment representing a given 
vector wherever is convenient; often this is from a single point, O, 
which is then called the origin. The vector OP



 is said to be the posi-
tion vector of the point P. (In practical applications one may use 
vectors and their points of application (“fixed vectors”) but these are 
not dealt with here.) Line segments can be added: A to B followed 
by B to C is the same as A to C (Figure 4.1). Therefore vectors can 
be added in the same way to give a resultant vector:

 .AB BC AC+ =
  

 (4.1)
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The sum is in the same plane as the summands. Equation (4.1) 
is usually referred to as the parallelogram law. Figure 4.1 shows also 
that vectors can be added in any order: we have also

.AB BC AD DC AC+ = + =
    

Line segments can be multiplied by real numbers to give fur-
ther line segments; for example in Figure 4.2, A to C is one and 
a half times A to B. Therefore vectors can be multiplied in the 
same way:

 1.5 .AC AB=
 

  (4.2)

Here AC


 is the vector in the same direction as AB


, 1.5 times 
as long. (In this context real numbers are also called scalars, so in 
equation (4.2) we say that the vector is multiplied by the scalar 1.5.) 
We can do both multiplication by scalars and addition, so, if l and m 
are scalars, expressions like

AB CDm+
 

l

are vectors. Such expressions are referred to as linear combinations 
of AB


 and CD


.

A

B

C

(a)

v

w

u
O λu

µv

(b)

FIGURE 4.2: (a) AC


 = 1.5 AB


. (b) Linear dependence, with w = lu + mv. 
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Exercise 4.1 If AB


 is 2 units due north and AC


 is 1 unit due 
east, what is 2AB AC+

 

?

Exercise 4.2 A person swims across a river with a speed rela-
tive to the water of 4 ft s−1at right angles to the current which is 
flowing at 3 ft s−1. Draw a figure to show the swimmer’s resultant 
motion and check that it accords qualitatively with your intuition.

Exercise 4.3 Rain falls vertically at 10 m s−1; draw a vector diagram 
to show how it appears to a person running at 5 m s−1.

Exercise 4.4 A, B, C, D are four points in space; and the seg-
ments AB, BC, CD, DA have mid-points P, Q, R, S, respectively. 
Show that

(i)  2AP AB=
 

(ii)  2PQ AC=
 

(iii)  PQRS is a parallelogram.

Usually, instead of writing AB


, say, for the line segment represent-
ing a vector, we give a vector a name, v say. The bold font indicates that 
this is the name of a vector; in hand written work we use v  or v



 or .v


 • The magnitude of a vector v is written as |v| or v.

•	 A linear combination of two vectors u and v would be written 
lu + mv.

•	 The zero vector is printed as 0 (and written 0 ), so that, for 
example, u − u = 0.

4.2. LINEAR DEPENDENCE; BASIS VECTORS 

Linear Dependence
We have seen that two vectors may be added to make a third in 

the same plane; e.g.

 w = lu + mv.  (4.3)
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If a relation of the form (4.3) holds we say that u, v, and w are 
linearly dependent.

Conversely, if u, v, and w are vectors lying in a plane, with u and 
v not parallel, then we can always find l and m such that equation 
(4.3) holds by completing the parallelogram of vectors as in Figure 
4.2(b). Thus, in the plane any two (non-parallel) vectors may be given 
independently but any third vector must be expressible in terms of 
these two as in equation (4.3). Thus, any three (non-parallel) vectors 
in the plane are linearly dependent and any one can be expressed in 
terms of the other two.

A set of vectors is said to be linearly independent if no vector in 
the set can be decomposed into a linear sum of the other vectors. If we 
rearrange equation (4.3) we get the criterion for linear dependence

	 lu + mv + nw= 0.  (4.4)

If this can only be satisfied when the coefficients are all zero 
(i.e. l = m = n = 0) then the vectors u, v, w are linearly indepen-
dent. There is a close connection between the maximum number 
of linearly independent vectors and the dimension of a given space: 
the dimension of a “vector space” is the largest number of linearly 
independent vectors we can choose.

In three-dimensional space we can specify three non-coplanar 
vectors arbitrarily (say u, v, w) and construct any other vector (say x) 
as a linear combination of these:

x = lu + mv + nw.

We say that x, u, v, and w are linearly dependent. It follows that 
any four (or more) vectors in three-dimensional space are linearly 
dependent and any one can be expressed in terms of the other three.

Basis Vectors
We can use these observations to provide a useful way of specify-

ing vectors. We make a convenient choice of the maximum number 
of independent vectors (two non-parallel vectors in two dimensions, 
three non-coplanar vectors in three dimensions). These we call our 
basis vectors. Any other vector in that space can then expressed as a 
linear combination of these basis vectors.
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It is often most convenient to choose the basis vectors to be of 
unit length and mutually perpendicular. Two such vectors in the 
plane are usually called i and j. In three-dimensional space, three 
such vectors are labelled i, j, k (see Figure 4.3). These are said to 
form an orthonormal basis: the ortho- indicates they are mutually 
orthogonal, the normal means they are unit vectors (normalized to 
have unit magnitude, i.e. of length 1) and basis means that they are 
linearly independent of each other, and every other vector is linearly 
dependent on them (can be made from a linear combination of the 
basis vector).

k

j

i

j

i

(a)

k

j

i

v

O
A B

C

1

3

2

(b)

FIGURE 4.3: (a) Basis vectors in 2D and 3D. (b) Diagram for example 4.1.

Unless stated otherwise, i, j, k are taken to be oriented to form a 
right–handed set; i.e. a rotation from i to j is clockwise when viewed 
in the direction of k. Sometimes the fact that these are vectors of 
unit length (“unit vectors”) is symbolized by a carat symbol (a “hat”)– 
e.g. ˆˆ ˆ, , .i j k  However, we shall take it that the notation i, j, k itself 
signifies unit vectors.

Example 4.1 Find the magnitude and direction of the vector 
v = i + 2j + 3k.

The vector v is obtained by starting at the origin O and moving 
1 unit along the i direction (call this point A), then 2 along the j 
direction (call this point B), and 3 along the k direction (call this 
point C). The length of v (line OC



) can be calculated using
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In general, the magnitude of a vector v = v1i + v2j + v3k is

( )1 22 2 2
1 2 3 .v v v= + +v

You should remember this formula.

Pythagoras’s theorem on the triangles OAB (to give the length 

of OB


) and OBC (to give the length of OC


).

The length of the hypotenuse of OAB is 
2 21 2 5OB = + =



. The length of the hypotenuse of OBC 

is 2 2 21 2 3 14OC = = + + =V


 units.

By considering the triangle OBC we see the angle between v 

and k is ( )1cos 3 14− ; by considering the triangle OAB we see 
the angle between the plane containing v and k and the vector 
i is ( )1cos 1 5− .

Exercise 4.5 Draw a figure showing the magnitude and direction 

of the vector 2 .= + +v i j k

Example 4.2 If a = i – 3j – 6k and b = 7i + 2k, find 3a + 2b.

To get 3a we multiply the coefficients in front of each of 
the basis vectors by 3; similarly to get 2b. Then we add the 
coefficients for each of the basis vectors.

 3a + 2b = 3(i – 3j – 6k) + 2(7i + 2k) 
 = 3i – 9j – 18k + 14i + 4k

 = 17i – 9j – 14k. 

Exercise 4.6 If u = 3i + j and v = i – 2j + 0.5k find expressions, 
in terms of the basis vectors i, j, k, for

(i)  u + v,

(ii)  2v – u.
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The introduction of a set of basis vectors provides the cru-
cial link between the geometrical picture of a vector (an object 
with magnitude and direction) and the algebra of vectors (objects 
formed from linear combinations of the basis vectors). By passing 
between the two approaches we can formulate a problem in geo-
metric terms, solve it using algebra and then return to a geometric 
picture, if that is appropriate. We shall see many examples of this 
in what follows: it is one of the reasons why vectors are so useful in 
physical science.

4.3. THE SCALAR (DOT) PRODUCT

We have seen how to add vectors both geometrically and in 
terms of a basis, and we have seen how to multiply a vector by a 
scalar but so far we have given no meaning to multiplying vectors. 
We are free to choose a definition for the product of two vectors, 
but if the resulting construct is to have any use it must correspond 
to some geometrical operation on directed line segments. It turns 
out that there are two such operations. The first of these is called 
the scalar or “dot” product and is defined here. Later we shall 
meet another product called the vector product. These are the 
only two meaningful ways of multiplying vectors. (Actually there 
is another, called the tensor product, but that will not concern  
us here.)

Example 4.3 Find the unit vector in the direction of the vector 
v = i + 2j + 3k.

To obtain the unit vector we must divide each component 
by the magnitude of v. We know from example 4.1 that 

2 2 31 2 3 14= + + =v , so the unit vector is

( )1ˆ 2 3 .
14

= = + +
v

v i j k
v
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Definition: Let q be the angle between the two vectors a and b. The 
scalar product (or “dot product”) of two vectors a and b, written a · b, 
is defined to be the number |a||b| cos(q):

 a · b = |a||b| cos(q)  (4.5)

Note that the definition implies the important result

a · a = |a|2.

Notice that the scalar product takes two vectors and produces one 
scalar (a number). Also notice, from the definition (Equation 4.5),  
that the scalar product is commutative:

 a · b = b · a  (4.6)

(the order of the two vectors in the scalar product does not affect 
the result).

If n̂  is a vector of unit length making an angle q with a vector 
v, then

( ) ( )ˆ ˆ cos cosq q⋅ = =n v n v v

is the (orthogonal) projection of v on n̂  (see Figure 4.4). In Section 4.9  
we shall find an alternative expression for the projection of one vec-
tor on another that does not explicitly involve the angle q.

b

a

|b|cos(θ)

θ

(a)

b
a

a·b

c
b+c

a·c

(b)

FIGURE 4.4:  (a) Projection of b and a. (b) The sum of projections onto vector a (which can 
be assumed to be a unit vector).
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Example 4.4 If a is a vector of magnitude 3, and b a vector 
of magnitude 1/2, and if the angle between a and b is 60°, 
what is a · b?

1 1 1 3
 = cos 3 cos(60 ) 3 .

2 2 2 4
q⋅ = × × ° = × × =a b a b

Exercise 4.7 If a · b = 0 and |a| ≠ 0, |b| ≠ 0, show that a and b are 
orthogonal (i.e. perpendicular to one another).

Exercise 4.8

(i)  What is a · b if a and b are parallel? When is a · b = –|a||b|?

(ii)  Show that i · i = j · j = k · k = 1 and that i · j = j · k = k · i = 0.

Exercise 4.9 If 1 2⋅ =a b  and |a| = |b| = 1, what is the angle 
between a and b?

Exercise 4.10 Show that the scalar product may be taken in 
either order; i.e. prove equation (4.6).

We shall need the distributive law for the scalar product

 a · (b + c) = a · b + a · c.  (4.7)

To establish equation (4.7) assume first that a is a unit vector. 
Then equation (4.7) says that the orthogonal projection of b + c on 
a is the sum of the projections of b and of c, a fact which is obvious 
geometrically (see Figure 4.4(b)). For a general a (not a unit vector) 
divide (4.7) through by |a| since then a /|a| is a unit vector. Note that 
equation (4.7) also implies that

(b + c) · a = a · b + a · c. 

Exercise 4.11 If a = 7i + 0.2j + 3k, find a · k. 

Exercise 4.12 By expanding (a + b) · (a + b) derive the formula 

|a + b|2 =|a|2 +|b|2 + 2|a||b| cos(q),

where q is the angle between a and b. Draw a figure to demon-
strate that this is the usual cosine rule of trigonometry. Also deduce 
that |a + b| ≤ |a| + |b| (which is called the “triangle inequality”).
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Here we summarize the most important algebraic properties of 
the scalar product

 a · a = |a|2

 a · b = b · a  (commutative)

 a · (b + c) = a · b + a · c  (distributive)

4.4. THE VECTOR (CROSS) PRODUCT

Our second way of multiplying vectors is the vector or “cross” product.

Definition: Let q be the angle between the two vectors a and b. The 
vector product (also called the “cross product”) of a and b, written 
a × b (or sometimes a ∧ b) and read as “a cross b”, is defined to be 
the vector of magnitude |a||b| sin(q) in a direction n̂  perpendicular 
to both a and b such that a, b and n̂  form a right-handed set. Thus 
rotation from a to b when viewed in the direction of n̂  is clockwise 
(see Figure 4.5) and

 ( ) ˆsin .q× =a b a b n  (4.8)

Notice the n̂  in the definition: the vector product gives a vector; 
the scalar product gives a scalar!

Example 4.5 Show that if a is parallel (or anti-parallel) to b, 
then a × b = 0 and conversely.

|a × b| = |a||b| sin(q) = 0 if and only if sin(q) = 0 or a = 0 or  
b = 0. So, |a × b| = 0 if and only if q = 0 (or π), i.e. if and only 
if a and b are parallel (or anti-parallel). If a = 0 or b = 0 it is 
regarded as parallel to every vector.

Exercise 4.13 What is a × b if a and b are perpendicular?

Exercise 4.14 Show that i × j = k. What are j × k and k × i?

Exercise 4.15 Show that |a × b| is the area of the parallelogram 
formed from a and b in Figure 4.5(b).
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b

a

θ

a×b

n^

|a||b|sin(θ)

(a)

b

a
θ

area=|a×b|=|a||b|sin(θ)

|b|sin(θ)

(b)

FIGURE 4.5:  (a) The vector product a × b. (b) The vector product a × b interpreted as a 
vector with magnitude equal to the area of the parallelogram formed by a and b.

Unlike the scalar product, the order in which we take the vec-
tor product does matter. We need the distributive law for vector 
multiplication:

a × (b + c) = a × b + a × c.

We won’t prove this relation here (the proof is quite tedious) but 
you can look it up if you are interested in the details.

Here we summarize the most important algebraic properties of 
the vector product:

 a × a = 0

 a × b = − (b × a)  (anti-commutative)

 a × (b + c) = (a × b) + (a × c)  (distributive)

Note that

 a × (b × c) ≠ (a × b) × c  (not associative)

in general.

Exercise 4.16 Show that a × b = – (b × a).

Exercise 4.17 If v = 3i + 2j − k, show that v × k = 2i − 3j. What 
is k × v?
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4.5. MULTIPLE PRODUCTS

From three vectors a, b, c we can form the scalar (i.e. number) 
(a×b) · c, by taking the scalar product of c with the vector product of 
a and b. This is called the scalar triple product of a, b, and c

a × b is the vector with magnitude equal to the area of the base 
of the parallelepiped formed from a, b, and c (Exercise 4.15), in the 
direction perpendicular to the plane of a and b (Figure 4.6). Therefore

(a × b) · c = (area of base) × (perpendicular height)
= volume V of the parallelepiped.

This assumes that a, b, c are a right-handed set, by which we mean 
that a × b makes an acute angle with c; otherwise (a × b) · c = −V  
(the sign is reversed).

Exercise 4.18 By considering the volume represented in each 
case show that

 (a × b) · c = (c × a) · b = (b × c) · a.  (4.9)

Deduce that (a × b) · c = a · (b × c).

The scalar triple product is usually written as [a, b, c]. From exer-
cise 4.18, [a, b, c] may be taken to mean (a × b) · c or a · (b × c) (or 
any of the permutations of Exercise 4.18); i.e. we can interchange the 
dot and cross, as well as permute the vectors cyclically. If we inter-
change the vectors in the vector product then this will change the sign 
of the result. Thus, for example (b × a) · c = − (a × b) · c.

b

a

a×b
c

volume = (a×b)·c

FIGURE 4.6:  The scalar triple product and the volume of a parallelepiped.
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In terms of the notation [a, b, c] for the scalar triple product the 
above properties can be written

[a, b, c] = [c, a, b] = [b, c, a] = − [a, c, b] = −[c, b, a] = − [b, a, c].

The vector A in Exercise 4.20 is called the reciprocal vector of a. 
A set of three vectors a, b, c has a reciprocal set of vectors A, B, C as 
follows:

 

[ ]

[ ]

[ ]

,
, ,

,
, ,

.
, ,

×
=

×
=

×
=

b c
A

a b c
c a

B
a b c
a b

C
a b c  (4.10)

Exercise 4.19 Show that [a, b, c] =0 if and only if a, b, c lie in 
a plane.

Exercise 4.20 Show that

[ ], ,
×

=
b c

A
a b c

satisfies A · a = 1, A · b = 0, A · c = 0 (if [a, b, c] ≠ 0).

Exercise 4.21 Let a, b, c be three non-coplanar vectors and sup-
pose that v = v1a + v2b + v3c. By taking the scalar product of v 

with the vector 
[ ]

1
, ,

= ×A b c
a b c

 show that

[ ]
[ ]1

, ,
,

, ,
v =

v b c
a b c

and find similar expressions for v2 and v3.
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4.6. EQUATION OF A LINE

In this section and the next we shall treat some geometrical 
properties of lines and planes directly in terms of vectors. Only after 
we have demonstrated how this can be done do we introduce coor-
dinates and components which enable us (if we wish) to do these 
calculations algebraically.

Let r be the position vector of a general point P on the straight 
line l in the direction of the unit vector t̂  passing through the point 
A having position vector a (Figure 4.7), and let AP



 have length l. 
Then

A

O

P

a
r

t

l

FIGURE 4.7:  Equation of a line: ˆl= +r a t .

 ˆ.l= +r a t  (4.11)

Exercise 4.22 In the plane of which two of the vectors a, b, c 
does (a × b) × c lie?

These exist if [a, b, c] ≠ 0, which means that a, b, c are not 
coplanar (Exercise 4.19). Reciprocal vectors are particularly useful 
in the study of crystal structure.

From three vectors a, b, c we can also form the vector (a × b) × c,  
called the vector triple product. We shall later establish a formula, 
equation (4.22), for this product in terms of the operations we have 
already met, so no special symbol is needed.
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As l varies between −∞ and +∞ the points P (reached by the 
position vector r) describe the whole of the line l. Thus equation 
(4.11) is the equation of the line l.

Example 4.6 Let r1 = a + lt, r2 = b + ms be the equations of two 
non-parallel straight lines as l and m vary (with |s| = |t| = 1). Show 
that the two lines intersect if and only if (a − b) · (s × t) = 0.

Since the lines are not parallel they 
intersect if, and only if, (a − b), s and 
t lie in a plane (see figure). Three 
vectors lie in a plane if their scalar triple 
product vanishes (exercise 4.19). That is,  
(a − b) · (s × t) = 0. 

(Alternative solution) If the 
lines intersect r1 and r2 have a common value at a point of 
intersection. So, the two lines intersect where

 a + lt = b + ms,  (4.12)

for some l and m, i.e. if

a − b = ms − lt.

Since s · (s × t) = 0 and t · (s × t) = 0, we take the scalar product 
of both sides with s × t to get rid of the unknowns l and m. 
Hence

(a − b) · (s × t) = 0.

If (a − b) · (s × t) = 0 then (a − b) lies in the plane of s and 
t, so equation (4.12) holds and there is a common point of 
intersection.

a

(a-b)

s

b
t

r2

r1

Exercise 4.23 If r1 = a + lt and r2 = b + ms are the equations of 
two non-parallel straight lines, show that

(i)  a − b is a vector joining the lines,

(ii)  ×
×

s t
s t

 is a unit vector perpendicular to both lines, and hence
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4.7. EQUATION OF A PLANE

Let a be the position vector of a point A on the plane ∑ which 
contains the unit vectors s and t. Let r be the position vector of the 
point R obtained by moving from A a distance l in the direction s 
and m in the direction t (Figure 4.8); then

 r = a + ls + mt.  (4.13)

As l and m vary, R describes the whole plane ∑. Thus equation 
(4.13) is the equation of ∑.

(iii)  the shortest distance p between the two lines satisfies 
|[a, s, t] − [b, s, t]| = p |s × t|.

(Hint: the shortest distance is the length of the projection of any vec-
tor joining the lines on the direction perpendicular to both lines.)

Example 4.7 Find a vector normal to the plane ∑ given by 
equation (4.13).

s × t is normal to s and to t by the properties of the vector 
product. You can see that s × t is normal to any vector in the 
plane by drawing s × t in the diagram. Formally, any vector in 
the plane can be written as r − a = ls + mt for some l and m and 
hence (r − a) · s × t = 0 (see Example 4.6). So, the vector s × t 
is normal to both s and t and hence it must also be normal to ∑.

Example 4.8 Show that as r ranges over points in ∑ (equation 4.13)

r · (s × t) = constant.

Since the equation we are aiming at does not involve l or m we 
try to eliminate these terms. This can always be done by taking 
the scalar product of the equation with a vector perpendicular 
to both, as in Example 4.6. Let

r = a + ls + mt,
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a

s

r

t

A

O

RΣ

FIGURE 4.8:  Equation of a plane: r = a + ls + mt.

so,

 r · (s × t) = a · (s × t) + ls · (s × t) + mt · (s × t) 

 = a · (s × t) + 0 + 0 

 = constant.

We let ˆ ×
=

×
s t

n
s t

; then it follows from Example 4.8 that we can 

write, for any r in the plane ∑,

 
ˆ ,p⋅ =r n  (4.14)

where ˆ constantp = ⋅ =a n  (by Example 4.8). Since equation (4.14) 
holds if and only if r is in ∑, this is also (an alternative form of) the 
equation of the plane ∑. In applications we use whichever of equa-
tion (4.13) and equation (4.14) is more convenient.

Example 4.9 Show that ˆp = ⋅a n  is the shortest distance to 
the plane ∑ from the origin O.

The shortest distance occurs along 
the direction from the origin 
perpendicular to the plane – i.e. 
in the direction of the normal ˆ .n  
This distance is the projection of 
r (any vector to the plane) on ˆ .n  
The distance is  r · ˆ .n =p.

n
r

^
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4.8. COMPONENTS OF VECTORS

We turn now to the algebraic approach to vectors. We have seen 
that any vector a (in three dimensions) may be represented by intro-
ducing unit basis vectors i, j, k:

 a = a1i + a2j + a3k.  (4.15)

Thus, we can refer to a in terms of its components a1, a2, a3 with-
out writing out equation (4.15) in full. We say that a is represented 
by the row vector (a1, a2, a3) in this basis. Often one writes this as

a = (a1, a2, a3),

with the meaning of equation (4.15). Once we are given a basis, 
any vector in three dimensions can be represented by an (ordered) 
triplet of numbers like this. (A vector in two dimensions obviously 
requires only two numbers and two basis vectors.) The same vector 
would be represented by a different triplet of numbers by someone 
using a

z

y

x

k

O

a = (a1, a2, a3)

a3

a1

a2

i

j

FIGURE 4.9: Vector components.

Exercise 4.24 Show that two distinct planes with unit normals 
1n̂  and 2n̂  intersect if and only if 1 2ˆ ˆ 0× ≠n n .
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different basis. Thus, a triplet of numbers is not a vector and 
a vector is not another name for triplet of numbers – a vector is a 
triplet of numbers in a specified basis.(In more sophisticated math-
ematical treatments, a vector is the set of triplets by which it is rep-
resented in all bases.)

If axes are labeled such that i, j, k are unit vectors along the 
x, y and z axes, respectively, from some origin O, then a1, a2, a3 
are, respectively, the x-component of a, the y-component and the 
z-component. So sometimes one writes (ax, ay, az ) for a.

Thus, a is represented by the point with coordinates (a1, a2, a3) 
relative to O. When dealing with the position vector r of a point rela-
tive to O, one usually writes (x, y, z) for the components of r (instead 
of (r1, r2, r3) or (rx, ry, rz)).

Example 4.10 What are the components of a + b in terms of 
the components of a and b?

Write each vector as a linear combination of the basis vectors 
(equation 4.15) and rearrange

 a + b = (a1i + a2j + a3k) + (b1i + b2j + b3k) 

 = (a1 + b1)i + (a2 + b2 )j + (a3 +b3)k,

so the components of (a + b) are (a1 + b1, a2 + b2, a3 + b3).

Exercise 4.25 What are the components of la (l a scalar)?

Exercise 4.26 If i, j, k are three mutually perpendicular unit 
vectors and a = (a1, a2, a3), show that a · i = a1, a · j = a2 and 
a · k = a3.

Exercise 4.27 With r = (x, y, z), a = (1, −2, 0) and t = (−1, 3, 0),  
write the three coordinate equations for the line r = a + lt. 
Deduce that this line is in the (x, y) plane and find m and c such 
that it can be put into the form y = mx + c.
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4.9.  SCALAR (DOT) PRODUCT  
(COMPONENT FORM)

In terms of components we have the important expression for 
the scalar product of vectors a and b:

 a · b = a1b1 + a2b2 + a3b3.  (4.16)

This follows because

 a · b = (a1i + a2j + a3k) · (b1i+ b2j + b3k)  (4.17)
 = a1b1 + a2b2 + a3b3.  (4.18)

Note that all the cross terms (e.g. a1i · b2j etc.) are zero since  
i · j = 0 etc. Only the terms (a1i · b1i), (a2j · b2j), (a3k · b3k) remain, and  
i · i =1 etc.

Thus we can work out a · b in either of two ways, whichever is 
most convenient:

a · b = |a||b| cos(q)
 = a1b1 + a2b2 + a3b3.  (4.19)

Note particularly the following important application of equa-
tion (4.19) to finding the angle between two vectors given in com-
ponent form.

Example 4.11 Find (in radians as a number between 0 and π) 
the angle between the vector ( )1, 3,1= −a  and b = (2, 0, −1).

Since we are given a and b in component form we can use the 
components to work out the scalar product.

1 1 2 2 3 3 1 2 3 0 1 1 3.a b a b a b+ + = − × + × + ×− = −

Also 

( ) ( )
( ) ( )

1 21 2

1 2 1 2

1 1 3 3 1 1 5,

2 2 0 0 1 1 5.

= ⋅ = − ⋅ − + ⋅ + ⋅ =

= ⋅ = ⋅ + ⋅ + − ⋅ − =

a a a

b b b
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But we also have expression (4.19) for the scalar product 
involving the angle we are trying to find. Hence

( ) 3 3
cos ,

55 5
q ⋅ −

= = = −
a b
a b

Take the inverse of cos in the correct quadrant to find the angle q:

q = cos−1 (−3/5) = π − cos−1 (3/5) = 2.214 ... radians

Exercise 4.28 Find in radians the angle between the vectors  
a = (−2, −2, 1) and b = (2, 0, −1).

Exercise 4.29 Find the projection of the vector a = (3, 5, 1) on 

the direction ( )1ˆ 1,1,1
3

=n .

Exercise 4.30 Find a vector N and a scalar P such that the equa-
tion x − y + 2z = 3 can be written in the form r · N = P (where  
r = (x, y, z) as usual). Hence write the equation in the form ˆ p⋅ =r n  
where n̂  is a unit vector. Deduce that the equation represents a 
plane and obtain the shortest distance from the origin to the plane.

For readers familiar with matrix algebra, we can write the scalar 
product of two vectors as a row vector multiplied by a column vector

 

( )
1

1 2 3 2 1 1 2 2 3 3

3

, , .
b

a a a b a b a b a b

b

 
 ⋅ = ↓= + + 
 
 

a b


  (4.20)

4.10.  VECTOR (CROSS) PRODUCT  
(COMPONENT FORM)

In terms of the components of two vectors a and b their vector 
product is

 a × b = (a2b3 – a3b2, a3b1 − a1b3, a1b2 – a2b1).  (4.21)
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Proof:
 a × b = (a1i + a2j + a3k) × (b1i + b2j + b3k) 
 = a1i × (b2j + b3k) + a2j × (b1i + b3k) + a3k × (b1i + b2j), 

expanding out using the distributive law and remembering that  
i × i = j × j = k × k = 0. Then making use of i × j = −j × i = k etc, 
we have that

 = a1b2k − a1b3j – a2b1k + a2b3i + a3b1j – a3b2i 
 =( a2b3 – a3b2)i + (a3b1 – a1b3)j + (a1b2 – a2b1)k.

We can use either equation (4.21) or equation (4.8) to evaluate a 
vector product – depending on the information available. It is important 
to know both expressions and to be able to spot which is appropriate.

Exercise 4.31 If a = (−2, −2, 1) and b = (2, 0, −1), find a × b. 
Show by explicit calculation that

(i)  a × b is orthogonal to a and b,

(ii)  (a × b) × a lies in the same plane as a and b. (Express it as 
a linear combination of these two vectors.)

Exercise 4.32 Find the unit normal to the plane containing the 
vectors s = (1, 1, 2) and t = (−1, −3, 0) and hence write the equa-
tion of the plane containing these vectors which passes through 
the point (0, 1, −1) in the form ax + by + cz = d.

For readers familiar with matrix algebra, we can write the vector 
product of two vectors as a determinant as follows:

( ) ( ) ( )

1 2 3

1 2 3

2 3 3 2 3 1 1 3 1 2 2 1 .

a a a

b b b

a b a b a b a b a b a b

× =

= − + − + −

i j k
a b

i j k

4.11. SCALAR TRIPLE PRODUCT

Now we have expressions for both scalar and vector products in 
component form it is possible to deduce the component form of the 
triple products.
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For readers familiar with matrix algebra, we can write the scalar 
triple product as a determinant

( )
1 2 3

1 2 3

1 2 3

1 2 3 1 3 2 2 3 1 2 1 3 3 1 2 3 2 1.

a a a

b b b

c c c

a b c a b c a b c a b c a b c a b c

⋅ × =

= − + − + −

a b c

4.12. VECTOR TRIPLE PRODUCT

The following important result should be memorized (but not 
the proof):

 a × (b × c) = b(a · c) − c(a · b).  (4.22)

This is sometimes known as the “bac minus cab” rule, the name 
chosen to help recall the order of the vectors on the right side of the 
equation.

Proof: Since no axes have been specified we may choose them to 
simplify the problem. Choose the i-axis perpendicular to b and c, so 
that b1 = c1 = 0. Then

Example 4.12 Find an expression for the scalar triple product 
[a, b, c] = a·(b × c) in terms of the components of the three 
vectors a, b and c.

We find b × c from the components of b and c using formula (4.21).

a · (b × c) = (a1, a2, a3) · (b2c3 − b3c2, b3c1 − b1c3, b1c2 − b2c1). 

Now find the scalar product of the result with a using 
equation (4.16):

a · (b × c) = a1b2c3 − a1b3c2 + a2b3c1 – a2b1c3 + a3b1c2 – a3b2c1.

Exercise 4.33 If a = (a, 0, 0), b = (0, b, 0) and c = (0, 0, c) com-
pute (a × b) · c and explain the result geometrically.
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 a × (b × c) = (a1,a2, a3) × (b2c3 − b3c2, 0, 0) 
 = (0, a3(b2c3 − b3c2), − a2(b2b3 − b3c2)),

while

b(a · c) − c(a · b) = (0, b2, b3)( a2c2 + a3b3) − (0, c2, c3) ( a2b2 + a3b3)
 = (0, a3c3b2 − a3b3c2, a2c2b3 – a2b2c3)

which is the same.

4.13. VECTOR IDENTITIES

We can use equation (4.22) together with the properties of the 
scalar triple product (section 4.5) to simplify various complicated 
products of vectors.

Example 4.13 Show that if v = w × r then |v|2 = |w|2|r|2 – (w·r)2. 

From the definition of |v|:

|v|2 = v · v.

The expression involves a double vector product so we try to 
put it in a form where we can use the expansion (4.22). Using 
v = w × r

v · v = (w × r) · v.

Interchanging scalar and vector products (dot and cross)

= w · (r × v) = w · (r × (w × r)).

We now have a triple vector product so use equation (4.22) 

= w · ((r · r)w – (r · w)r).

Expanding out the parenthetical by the distributive law 

= (r · r)(w · w) – (r · w)(w · r).

Finally using the definition of “| |”

= |w|2|r|2 – (w· r)2,

as required.
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Let a, b, c be the (unit) 
vectors from the center O to 
points on a unit sphere cen-
tered on O. A spherical trian-
gle is made from arcs of great 
circles joining the points at the 
ends of a, b and c. Let a, a, b 
and g denote the sides of the 
triangle; because the sphere is 
of unit radius the length α is 
the same as the angle between 
b and c etc. Since a × b is nor-
mal to the plane containing a 
and b, a × c is normal to the 
plane containing a and c, and 
A is the angle between these 
planes, we have

(a × b) · (a × c) = |a × b||a × c| cos(A) = sin(g) sin(b) cos(A).  (4.23)

Exercise 4.34 Show that (a × b) · (a × c) = (b · c)(a · a) – (a · c)(b · a).

Exercise 4.35 Show that

(a × b) × (c × d) = [a, b, d]c – [a, b, c]d. 

Find a similar expression for (a × b) × (c × d) as a linear combina-
tion of a and b, and hence deduce that

[a, b, c]d = [d, b, c]a + [a, d, c]b + [a, b, d]c.

(Compare Exercise 4.21)

O

B

a

b

c

α

β

γ

A

C

Exercise 4.36 Deduce from equation (4.23) and Exercise 4.34 that

cos(a) = cos(b) cos(g) + sin(b) sin(g) cos(A). 

This is the cosine formula of spherical trigonometry.
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Example 4.14 If a, b and l > 0 are given, solve for x the 
equation

 x × a + lx = b.  (4.24)

Take scalar and vector products with the constant vectors in the 
problem and attempt to simplify the result. Here the possible 
independent constant vectors we might want to use are a, b 
and a × b. Taking the scalar product with a on both sides gives

 0 + la · x = a · b.  (4.25)

Therefore

 a · x = l–1 (a · b).  (4.26)

Now taking the vector product of a with both sides gives 
another equation:

 a × (x × a) + la × x = a × b.  (4.27)

And note that, by equation (4.24),

 a × x = lx – b.  (4.28)

Now, expand the vector triple product equation (4.27) using 
equation (4.22). Then substitute for a · x using equation (4.26), 
and substitute for a × x using equation (4.28). The result should 
be an equation that is linear in x and can be solved with a little 
algebra. See Exercise 4.37. The solution is

( )( )1
2 2

1
X .l l

l
−= + ⋅ + ×

+
b a b a a b

a

Example 4.15 An alternative method for solving

x × a + lx = b.

Express the unknown x as a linear combination of the 
constant vectors of the problem with coefficients to be 
determined. Let
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4.14. EXAMPLES FROM PHYSICAL SCIENCE

Work is done by a force when the force acts on a body that 
moves, and the force has a component along the line of motion.

Example 4.16 A particle acted on by a force F = 4i − 2j N is 
given a displacement l = 2i + 8j + 2k m. How much work is 
done by the force?

The work done is the component of force in the direction of 
motion times the distance. Since we are given the component 
form of the force and the displacement we use the component 
form of the scalar product. Thus

Work done = F · l = Fxlx + Fyly + Fzlz 

 = 4 × 2 − 2 × 8 + 0 × 2 
 = −8 J.

x = aa + b b + g a × b.

Substitute in (4.24)

(aa + b b + ga × b) × a + (aa + b b + g a × b) l = b.  (4.29)

Multiplying out and comparing coefficients of a, b and a × b 
will yield three equations for the three unknowns a, b and g.

Exercise 4.37

(i)  Complete the missing algebra steps in example 4.14.

(ii)  Complete the missing algebra steps in example 4.15 to 
obtain the same solution.

Exercise 4.38 Given vectors a and b such that a · b = 0, solve 
the equation x × a = b subject to the condition x · a = k (a given 
constant).
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The power supplied by a force is equal to the rate at which the 
force does work. This can be written as P = F · v, where v is the 
velocity of a particle acted on by a force F.

Exercise 4.39 How much work is done by a force F = 8i + 2k N  
acting on a particle which is displaced through a distance  
l = −2i + 4j + 10k m?

Exercise 4.40 A particle displaced through l = 0.5i + 0.2j m is 
acted on by two forces, F1 = 3i + 3j N and F2 = 4i + 3k N.

(i)  What is the work done by F1 and F2?

(ii)  What is the net force F1 + F2?

A constant electric field E passes through a plane surface of area 
A with unit normal n̂ . The electric flux φ through A is defined to be 
φ = E · n̂ A.

Exercise 4.41 What is the power input of a force 2i + 3j + 2k 
N that acts on a particle moving with velocity 3i + 2j − 2k m s−1?

Exercise 4.42 A surface of area 2 cm2 has a unit normal 
ˆ (2 i j) / 5.= +n The surface is located in a region with a uni-

form electric field E = 4i + 2j + 2k V m−1. What is the electric 
flux through the surface?

The torque t about the origin exerted by a force F acting through 
a point with position vector r is defined as t = r × F. Clearly t is 
orthogonal to both r and F.

The angular momentum L of a particle with linear momentum 
p at a position r relative to some origin is L = r × p. As with torque, 
angular momentum is defined relative to an origin. Torque is related 
to angular momentum: the net torque acting on a body equals the rate 
of change of angular momentum. If the angular momentum of a body 
is constant then there is no net torque on the body (and conversely).

Exercise 4.43

(i)  A force F = 150i + 200j − 150k N acts on a body through a 
point at r = 2i − 3j m relative to the origin O. Calculate the 
torque exerted by this force about O.

(ii)  Verify that the torque is orthogonal to the applied force.
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4.15. EXTENSION: INDEX NOTATION

Many vector equations involve the x, y and z components in 
equivalent ways. For example, the scalar product of A and B is 
AxBx + AyBy + AzBz where each term in the sum is identical in form 
but with a different index. If we label the coordinates as x1, x2 and 
x3 instead of x, y and z we can write the scalar product as

3

1

.i i
i

A B
=

⋅ =∑A B

We can even abbreviate this if we use the convention (called 
the Einstein summation convention) that a repeated index is to be 
summed over. With this understanding we simply drop the explicit 
summation sign and write the expression for the scalar product as

A · B = AiBi.

A useful quantity is the Kronecker delta defined by

1 if
0 if .ij

i j

i j
d

=
=  ≠

So, for example, d11 = 1 and d13 = 0. A second useful quantity is 
the permutation symbol defined by

1 if , , 1,2,3 or 2,3,1or 3,1,2
1 if , , 2,1,3 or 1,3,2or 3,2,1

0 otherwise.
ijk

i j k

i j kŒ
=

= − =



So, for example, Œ132 = −1 and Œ112 = 0. We can write the cross 
product using Œijk and the summation convention in the compact form

(A × B)i = Œijk AjBk.

Exercise 4.44 At some instant a particle has velocity v = −3i + 6j 
m s−1 and is located at a point with position vector r = −4i + 2j m.  
If the particle has a mass 2.5 kg, what is its angular momentum 
about the origin?
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So, for example, we deduce that (A × B)1 = Œ123A2B3 + Œ132A3B2 
= A2B3 − A3B2 because all the other potential terms in the sum over 
j and k vanish.

A useful identity is ŒijkŒilm = djldkm − djmdlk from which we 
can deduce directly the formula for the triple vector product in 
Section 4.12.

Revision Notes

After completing this chapter you should be able to

•	  Calculate linear combinations of vectors

•	  Calculate the magnitude and direction of a vector given 
in component form

•	  Calculate the components of a vector given as a 
magnitude and direction

•	  Calculate the scalar product of two vectors from 
magnitudes and directions or from components

•	  Calculate the vector product of two vectors

•	  State the properties of the scalar triple product

•	  Give a formula for the vector triple product

•	  Derive vector identities for more complex products

•	  State the equation of a line in vector form

•	  State the equation of a plane in two different forms

•	  Find the unit normal to a plane and its distance from the 
origin

•	  Compute the work done by a force, the flux of a constant 
field through a plane surface, the torque exerted by 
a force about an axis and the angular momentum of a 
particle of a given velocity
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4.16. EXERCISES

1. If a = i − j and b = i + j find a unit vector perpendicular to 
both b and a × b.

2. Find the angle between the vectors (1, −1, −4) and (2, 2, 1).

3. Find the angle between the vectors (3, 2, 4) and (1, 0, 2).

4. Write down the components of a unit vector which is  
normal to both the vectors (1, −1, 3) and (2, 2, −2).

5. Find the components of a unit vector which is perpendicu-
lar to both (1, −1, −1) and (0, 2, 3).

6. Two sides of a triangle are formed by the vectors i + 2j + k 
and 3i + 2j − k. What is the area of the triangle and the unit 
normal to the triangle?

7. (i)   If vectors a and c are given such that a · c = 0, find all 
solutions to the following equation for the vector x:

a × x = c.

 (ii)  Find an expression for the vector X in terms of A, B and 
C given that X · A + C = 0 and X × A + B = 0.

8.  If A and B are orthogonal show that the length of the vector 
2 2+  is (C C× +A A B A B .

9. Find the unit normal to the plane x + 2y − 2z = 15. What is 
the distance of the plane from the origin?

4.17. PROBLEMS

1.  Show that the equation of the straight line passing through 
the points with position vectors c and d can be written as

r = c + lt,
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 where t = d − c, and l is a parameter. Show on a diagram 
which parts of the line correspond to (i) l < 0, (ii) 0 ≤ l ≤ 1, 
(iii) l > 1. Show that the equation of the plane that passes 
through the point with position vector a, and that has nor-
mal n, can be written as

r · n = a · n.

 Show that, if t · n ≠ 0, the straight line intersects the plane 
in the point with position vector

( )
+{ } .

− ⋅
⋅

a c n
c t

t n

 What does this point become if a = d?

2.  The points A, B, C, D and E have rectangular Cartesian 
coordinates (3, 1, 2), (−2, 7, 1), (4, −1, 3), (1, 1, −4), (2, 0, 1),  
respectively. Find the equation of the straight line, L, 
through D and E. Find an equation for the plane, P, through 
A, B and C. Find where L intersects P.

3.  For a = (3, 1, 2), b = (−2, 7, 1), c = (4, −1, 3) verify the 
identities

 (i)  a × (b × c) = (a · c)b − (a · b)c,

 (ii)  (a × b) · c = a · (b × c).

 Now, letting a, b, c, d be any vectors and assuming that (i) 
and (ii) are always true, show that

(a × b) · (c × d) = (a · c)(b · d) − (b · c)(a · d),

 and also simplify(a × b) × (c × d).

4.  Three points A, B, C have coordinates (1, 1, 2), (2, −1, −2), 
(3, 2,1):

 (i)  Calculate the perimeter of the triangle ABC.

 (ii)  Find the vectors AB


 and AC


.
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 (iii)  Find a vector perpendicular to both AB


 and AC


.

 (iv)  Find the area of the triangle ABC.

 (v)   Find the equation of the plane through ABC in the 
form ax + by + cz = d.

 (vi)   Find the perpendicular distance of this plane from the 
origin.

5.  The plane which has vector equation k · r = 1 (with k a 
unit vector) intersects the sphere which has vector equa-
tion |r| = 2. If a and b are the position vectors of the two 
diametrically opposite points on the circle of intersection 
of the plane and the sphere show that (a − b) = 2a −2k. 
Hence find the diameter of the circle.

6.  The angle between two non-parallel unit vectors a and b is 
q, and two further vectors A and B are defined by

A = a − b cos(q) and B = b − a cos(q).

 Show that

A · B = −sin2(q)a · b and A × B = sin2(q)a × b. 

 An arbitrary vector d is to be expressed as a linear  
combination 

d = la + mb + na × b;

 show that

l sin2(q) = d · A, m sin2(q) = d · B, n sin2(q) = d · (a × b).

 A point d lies on the intersection of the two planes r · a = a 
and r · b = b, and satisfies the condition that d · (a × b) = 0. 
Show that d sin2(q) = aA + bB.

7. (i)   Write down the vector equation for the plane through 
the point c containing the vectors a and b.
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 (ii)   If a = (1, 1, 4), b = (2, 3, 1) and c = (1, 2, 1) write down 
the equation of the plane in the form

lx + my + nz = p.

 (iii)   Write down the vector equation of the line through c 
in the direction of the normal to the plane, and find the 
point d where it cuts the (x, y) plane.

 (iv)   Find the points m1, m2, and m3 at which this plane cuts 
the x-, y- and z-axes, respectively.

 (v)  What is the volume of the tetrahedron with vertices at 
d, m1, m2, and m3?

8. Find the solution for x for the following vector equation:

a × x + bx + c = 0.

 Show also that x and c are equal in length if a and c are 
orthogonal vectors and a2 + b2 = 1.

9.  Find the angle between the vector a = (1, 0, 2) and the 
plane 3x − y + z = 1.

 A line is drawn parallel to a through the origin. Find the co-
ordinates of the point where this line cuts the above plane.

10. Find the equation of the line l1 through the point (5, 2, 0) in 
the direction of (2, 1, 2) and of the line l2 through (−1, 1, −1) 
in the direction of (4, 0, −1). Find the point of intersection 
A of l1 and l2. Hence determine the equation of the plane 
through A containing l1 and l2. What is the distance of this 
plane from the origin?

11.  Let a =(0, 0, 3 /2)  and t = (1, 1, 1) 3.  Find the points on 
the line, l1, r = a + lt that lie a unit distance from the origin. 
Find the equation of the line, l2, joining the origin to one of 
these points. Find the equation of the plane containing the 
lines l1 and l2.





CHAPTER 5
MATRICES

You should be familiar with the solution of a pair of simultaneous  
linear equations in two unknowns, by the elimination of one vari-
able. You might think that more equations in more unknowns could 
be solved by a similar process of successive eliminations. If all you 
ever want to do is to solve specific equations then this is correct 
(but not very efficient; imaging trying this for 100 equations in 100 
unknowns typical of large engineering projects).

However, if you want to understand, for example, the circum-
stances under which a system of equations has a solution (since not 
all of them do), and to apply important tools for analyzing them, 
you will need to be familiar with the matrix representation of such 
systems of equations. The theory leads to the use of matrices as rep-
resentations of transformations (for example a rotation of coordinate 
axes) and the construction of the “eigenvectors” and “eigenvalues” 
that turn out to play a crucial role in almost all branches of physical 
science (wherever small oscillations are important, e.g. in quantum 
mechanics and in numerical data analysis). These topics (matrices, 
eigenvectors etc.) are sometimes gathered under the umbrella term 
linear algebra.

Let’s begin with what matrices are and some motivation for their 
introduction. Suppose we want to solve the pair of simultaneous 
equations

3x + 2y = 7
6x − y = 4
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We start by (for example) multiplying the second equation by 2:

3x + 2y = 7 
12x − 2y = 8

Adding the equations and multiplying the first by 5 gives

15x + 10y = 35 
15x + 0y = 15

and subtraction gives

0x + 10y = 20
15x + 0y = 15

from which we can read off x = 1 and y = 2. Notice, however, that 
the x and y are acting merely as placeholders: if we keep every-
thing aligned we do not have to write out the x and y in every 
line. For example, the first two steps of the calculation could be 
written:

   
=   −   

3 2 7
12 1 4

and
   

=   −   

3 2 7
12 2 8

And so on, provided we have a rule that enables us to put back the x 
and y. This rule must be such that

 

3 2 3 27
.

6 1 6
x x

y x y

+     
=     − −        

(5.1)

With this rule in place we can manipulate the set of coefficients 
as an entity, as long as the rules are compatible with the rules for 
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manipulating simultaneous equations. The set of coefficients is then 
called a matrix. Note that a matrix is not just an array of numbers; 
it is the array plus the rules for manipulation. Let us now formalize 
these rules.

5.1. MATRIX REPRESENTATION

Let a = (a1, a2, a3) and x = (x1, x2, x3) be vectors. Consider the 
scalar product a · x = a1x1 + a2x2 + a3x3 from Section 4.9. We can 
write this product as

 

( )
1

1 2 3 2 1 1 2 2 3 3

3

, ,
x

a a a x a x a x a x

x

a x
 
  = ⋅ = + + 
 
 



  

(5.2)

where corresponding terms reading across the row and down the 
column are to be multiplied together (a1 × x1, a2 × x2, a3 × x3) and 
the results added. (The arrows are there for illustration only.) This 
can be extended thus:

 

1 2 3 1 1 1 2 2 3 3

1 2 3 2 1 1 2 2 3 3

1 2 3 3 1 1 2 2 3 3

a a a x a x a x a x

b b b x b x b x b x

c c c x c x c x c x

⋅ + +       
       = ⋅ = + +       
       ⋅ + +       

a x
b x
x x



 
 

(5.3)

where the result of going across each row in turn on the left is placed 
at the corresponding level on the right. The first array on the left 
is called a matrix. More specifically it is a 3 × 3 matrix (there are 3 
rows running across the page, 3 columns running down the page).  
A vector is a special case: it can be written as a single column, in 
which case it is known as a “column vector” or 3 × 1 matrix, or as a 
single row, hence known as a “row vector” or 1 × 3 matrix. Both are 
used in equation (5.2).
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We can use matrices to represent systems of linear equations, as 
in the following example.

Example 5.1 Represent the system of equations

 

( )
( )
( )

i 3
ii 2 0

iii 4 2 3 4

x y z

x y z

x y z

+ − = −
+ − =

− − =    

(5.4)

in matrix form.

Write out the coefficients as a matrix, and the set of unknowns 
and the constants on the right as column vectors:

 

1 1 1 3
2 1 1 0
4 2 3 4

x

y

z

− −     
     − =     
     − −         

(5.5)

Using the rule shown in equation (5.3) on the left side of 
equation (5.5) gives us (5.4) as required.

However, if we want this representation to be useful, we must 
establish rules for manipulating the matrix of coefficients that cor-
respond to manipulation of the equations. In particular, writing the 
system (5.5) in the form

Ax = h,

where A stands for the matrix on the left side and h for the column 
vector on the right, we should like to “divide through by A” and 
obtain the matrix solution

 x = A−1h.   (5.6)

In order to attach a meaning to the matrix A−1 we must develop 
the rules of algebra for matrices.
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1. Multiplication by a scalar. We can multiply the system (5.4) by 
any non-zero number to obtain an equivalent system: e.g. multiplying 
(5.4) by 2 we get

2x + 2y − 2z = −6 
4x + 2y − 2z = 0 
8x − 4y − 6z = 8.

In matrix form this can be written as

− −     
     − ⋅ = ⋅     
     − −     

2 2 2 6
4 2 2 0
8 4 6 8

x

y

z

Thus we have shown that

1 1 1 2 2 2
2 2 1 1 4 2 2 ,

4 2 3 8 4 6

− −   
   × − = −   
   − − − −   

i.e. to multiply a matrix by a scalar we multiply all the entries by the 
scalar value.

2. Addition (or subtraction). Equation (5.5) can be written  
(in infinitely many ways) as a sum (or difference) of subsystems: e.g.

0x + 0y − 2z + x + y + z = −3
0x + y + 0z + 2x + 0y − z = 0

x − 5y − 6z + 3x + 3y + 3z = 4.

The choice of coefficients is quite arbitrary provided they sum to 
those in equation (5.5). In matrix notation this is

 − −       
        + − =        
        − −        

0 0 2 1 1 1 3
0 1 0 2 0 1 0 .
1 5 6 3 3 3 4

x

y

z
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Thus to add two matrices, we add the corresponding entries. 
In order to add or subtract two matrices, they must have the same 
dimensions (in the above example we add two 3 × 3 matrices to get 
another 3 × 3 matrix).

Notation: It is sometimes more convenient to use a more systematic 
notation for the elements of A. If we write

← 
  ← 
↑ ↑

11 12

21 22

row1
A=

row2

col1 col 2

a a

a a

(the first index labels the row, the second the column) then aij is the 
element of A in the ith row and jth column. An M × N matrix has M 
rows and N columns. A square matrix has the same number of rows 
as columns, i.e. has dimensions N × N.

Using this notation we can write down the rules above. For mul-
tiplication by a scalar B = λA we multiply all the elements of the 
matrix by the scalar:

bij= λaij,

where subscripts i, j run over the dimensions of the matrix. And 
for the sum of two matrices (of the same dimensions) C = A + B, 
we compute the elements of C as the sum of the corresponding  
elements of A and B:

cij = aij + bij.

Exercise 5.1 Let

3 0 1 8 1 1 1
= 0 1 5 , = 5 2 3 , 2 , and .

3 2 3 0 1 1 1

x

y

z

h x
−       

       − = =       
       − −       

A B

(i) Write out the system of equations Ax = h explicitly.

(ii) What is the matrix 3A − B?
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5.2. SOLUTION OF SYSTEMS OF EQUATIONS

Systems of linear equations can be solved by operations equiva-
lent to those we have just introduced. To solve equations (5.4) we 
can begin by subtracting 2×(i) from (ii), keeping the other equations 
untouched.

( ) ( )
( ) ( ) ( )

( ) ( )

+ − + + + + = −
+ − + − − + = − − =

− − + + + + =

0 0 0 3
2 2 2 2 0 6 6.

4 2 3 0 0 0 4

x y z x y z

x y z x y z

x y z x y z

In matrix terms this can be written as

 − −       
        − + − − =        
        − −        

1 1 1 0 0 0 3
2 1 1 2 2 2 6 ,
4 2 3 0 0 0 4

x

y

z

or

 

1 1 1 3
0 1 1 6 .
4 2 3 4

x

y

z

− −     
     − =     
     − −         

(5.7)

Equation (5.7) is an equally valid representation of the original 
system (1.3). We can continue this procedure, but to simplify mat-
ters we simply carry out the operations directly on the matrix entries. 
Thus, the operation that produces (5.7) from (5.5) amounts to sub-
tracting twice the first row from the second in the matrix on the left 
and in the column vector on the right:

( )
1 1 1 3 1 1 1 3

2 2 2 1
2 1 1 0 0 1 1 6 .
4 2 3 4 4 2 3 4

x x
R R R

y y

z z

− − − −           
→ − ×           − = − =           

           − − − −           
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(The notation above the arrow “R2 → R2 − (2 × R1)” means 
“replace the second row with the original second row minus twice 
the first row.”)

A possible further series of equivalent representations, obtained 
by the indicated operations on rows, is

( )

( )

1 1 1 3 1 1 1 3
3 3 4 1

0 1 1 6 0 1 1 6
4 2 3 4 0 6 1 16

1 1 1
3 3 6 2

0 1 1
0 0 5

x x
R R R

y y

z z

x
R R R

y

z

− − − −           
→ − ×           − = − =           

           − − − −           
−  

→ − ×   − 
 −  





3
6

20

− 
 =  

  
  

Now, the equivalent system is easier to solve. Writing it out  
we have

x + y − z = −3
−y + z = 6

−5z = −20 
(5.8)

from which z = 4, y = −2, x = 3.

Note that the final form of the matrix representation involves 
only zero entries below the diagonal. Such a matrix is said to be 
upper-triangular (meaning the non-zero entries are all in the top 
right triangle, and on the leading diagonal). This enables us to 
solve (5.8) easily for z, then y, then x working backwards up the 
system. In fact, we say that the system of equations (5.8) can be 
solved by back-substitution. The aim of the series of equivalent 
representations was to achieve this triangular form. Note: reduc-
tion to a lower triangular form by a similar method would be 
equally effective.

Rather than use back-substitution we can use row operations to 
reduce the matrix still further. Continuing, we have
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( )

( )

1 1 1 3
0 1 1 6
0 0 5 20

2 5 2 3
1 1 1 3

3 3 / 5
0 5 0 10
0 0 1 4

1 1 2 / 5 3
1

2 2 / 5

x

y

z

R R R
x

R R
y

z

R R R R

R R

− −     
     − =     
     − −     

→ × +
− −     

→ −      − =     
     
     

→ + +
→ −





0 0 3
0 1 0 2
0 0 1 4

x

y

z

     
     = −     
     
     

from which the solution can be read off directly.
It is clearly unnecessary to write out the (x, y, z) column and 

the equals sign at every step, and the right hand side can be car-
ried along as part of the array, as we will see in the following 
example.

Example 5.2 Solve the system

 x + 2y + 3z = 10  
(5.9) 2x + 5y + 8z = 24

 3x + 8y + 14z = 39 

by reduction to triangular form and back-substitution.

We work through a series of equivalent representations to 
obtain a triangular form:

( )
( )

2 2 2 1
1 2 3 10 1 2 3 10

3 3 3 1
2 5 8 24 0 1 2 4 .
3 8 14 39 0 2 5 9

R R R

R R R

→ − ×
   

→ − ×   
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This method is a useful way of organizing the working of the 
solution of linear systems by hand. But, like the simultaneous equa-
tions method, it is not a practical algorithm for really large systems 
or for implementation as a computer program. (For larger systems 
special methods have been developed.)

Start from the left hand column using either of the rows above.

( )
1 2 3 10 1 2 3 10

3 3 2× 2
0 1 2 4 0 1 2 4 .
0 2 5 9 0 0 1 1

R R R
   
   → −
   
   
   



From the upper triangular form write out the equivalent 
system and solve by back-substitution.

x + 2y + 3z = 10 
y + 2z = 4 

z = 1

from which we see z = 1, and so y = 4 − 2 = 2 and x = 10 − (2 × 2) 
 − 3 × 1 = 3. Or,

z = 1, y = 2, x = 3.

Exercise 5.2 Solve the system

x + y + 3z = 5
x + 6y + 10z = 17
−x + 4y − 5z = 8.

5.3. PRODUCTS

In Section 5.1, we learned how to multiply a matrix and a col-
umn vector. We multiply two matrices by treating the second one 
as a set of column vectors. For example, multiplying the same 3 × 3 
matrix by different column vectors we get
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3 0 1 8 24
0 1 5 5 5 ,
1 2 3 0 2

3 0 1 1 2
0 1 5 2 7 ,
1 2 3 1 0

3 0 1 1 4
0 1 5 3 8 .
1 2 3 1 4

−     
     =     
     − −     

−     
     =     
     −     

−     
     − = −     
     − −     

So, putting these together

3 0 1 8 1 1 24 2 4
0 1 5 5 2 3 5 7 8 .
1 2 3 0 1 1 2 0 4

−     
     − = −     
     − − −     

Exercise 5.3 Let

−   
   = = −   
   − −   

3 0 1 8 1 1
0 1 5 and 5 2 3 .
1 2 3 0 1 1

A B

Find

(i) BA (the product of B and A in the indicated order)

(ii) AB
(iii) Does AB = BA in this case?

If AB ≠ BA for matrices A and B, we say that A and B do not 
commute (with respect to multiplication). In general, matrix mul-
tiplication is not commutative: the result depends on the order of 
multiplication. Therefore, if we are multiplying a matrix equation  
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B = C by a matrix A we must specify whether this is on the left or 
the right, giving AB = AC or BA = CA. (Both are true but they are 
different equations if A and B do not commute.)

Exercise 5.4 If A and B are as in Exercise 5.3 and

 
 = − 
 
 

3 0 1
1 1 1 ,
0 2 1

C

find

(i) C(AB),
(ii) (CA)B.

(iii) Verify that C(AB) = (CA)B in this case.

The equality C(AB) = (CA)B is called the associative law and is 
true for all matrices A, B, C. Therefore we can write CAB for this 
product without ambiguity. Multiplication by a scalar can be done at 
any stage of taking a matrix product. For example,

λ (ABC) = ( λA)BC = A( λ (BC)) etc.

Exercise 5.5 The following 2×2 matrices are important in quan-
tum mechanics ( = −1i as usual):

s s s
−     

= = =     −     
1 2 3

0 1 0 1 0
, ,

1 0 0 0 1
i

i

Find a relation between s1s2 – s2s1 and s3. 

We can also write the product in terms of matrix elements. 
If A is an M × K matrix and B is a K × N matrix, we can compute 
the elements of the product C = AB, which is an M × N matrix, as 
follows
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ij
=

=∑
1

K

ik kj
k

c a b

where i  = 1, 2, .  .  .  ,  M  and j  = 1, 2, .  .  .  ,  N . For example for 
the product of a 2 × 3 matrix with a 3 × 2 matrix we have

 
     =    
    

 

11 12
11 12 13 11 12

21 22
21 22 23 21 22

31 32

b b
a a a c c

b b
a a a c c

b b

where c11 = a11b11 + a12b21 + a13b31 (formed from the 1st row of A and 
the 1st column of B as marked).

5.4. THE IDENTITY MATRIX

Definition: the identity matrix. The matrix

 
 =  
 
 

1 0 0
0 1 0
0 0 1

I

is called the (3×3) identity matrix. Sometimes it is called the 
unit matrix. The N × N identity matrix (always square) has ones 
on the leading diagonal (top left to bottom right) and zeros  
elsewhere.

N

 
 
 =
 
 
 





 



1 0 0
0 1

0
0 0 1

I
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5.5.  SYMMETRIC AND ANTISYMMETRIC MATRICES

Definition: transpose of a matrix. If A is the matrix

 
 =  
 
 

11 12 13

21 22 23

31 32 33

,
a a a

a a a

a a a

A

the transpose of A is the matrix AT:

11 21 31

12 22 32

13 23 33

,
a a a

a a a

a a a

 
 =  
 
 

TA

obtained by interchanging rows and columns. We call A symmetric if 
AT = A and antisymmetric if AT = −A.

Exercise 5.6

(i) For a general 3×3 matrix

 
 =  
 
 

11 12 13

21 22 23

31 32 33

,
a a a

a a a

a a a

A

 show that IA = AI = A. 
(ii) What is SA where S is the matrix

 
 
 
 
 

7 0 0
 = 0 7 0 ?

0 0 7
S
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Part (i) of Exercise 5.8 gives another way of looking at an anti-
symmetric matrix: the terms below the diagonal are the negatives of 
the corresponding terms above the diagonal and the diagonal terms 
are zero.

5.6. INVERSES

Definition: Given a matrix A, if a matrix M exists with AM = MA = I  
then M is the inverse of A. We write M = A−1. In words: the prod-
uct of a matrix and its inverse is the identity matrix (A−1A = I). (Of 
course, if M is the inverse of A then A is the inverse of M.)

Exercise 5.7 Let A and B be the matrices defined in Exercise 5.3.  
Find AT and BT and verify that

ATBT = (BA) T.

Note the order in which the matrices are multiplied. This result is 
true for general matrices A and B.

Exercise 5.8

(i) The matrix

⋅ 
 ⋅ ⋅ 
 ⋅ ⋅ ⋅ 

a b

c

 is antisymmetric. Fill in the missing elements.
(ii) For any matrices A and B, what are (AT)T and (A + B)T ?

(iii) Verify that if M is an arbitrary matrix, the matrices 

( )+
1
2

TM M  and ( )−
1
2

TM M  are respectively symmetric 

and antisymmetric. Deduce that every matrix is the sum of a 
symmetric and an antisymmetric matrix.
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When we work with scalars we consider ab = c and a = c/b as 
equivalent (b ≠ 0). But for matrices “division” does not have such 
a clear meaning. For matrices we instead work with AB = C and  
A = CB−1.

Exercise 5.9 Are the following statements (a) true or (b) false?

(i) 

 
 
 
 −
 
 
  
 

1
0 0

2
1

0 0
3

0 0 1

 is the inverse of 
2 0 0
0 3 0
0 0 1

 
 − 
 
 

,

(ii) 
− 

 − 
 
 

5 0 5
1

6 10 1
25

7 5 3

 is the inverse of 
− 

 
 
 − − 

1 1 2
1 2 1
4 1 2

,

(iii) 
− 

 
 
 − − 

1 1 2
25 1 2 1

4 1 2
 is the inverse of 

− 
 − 
 
 

5 0 5
6 10 1
7 5 3

.

In fact if AM = I it can be shown that automatically MA = I, so 
there is no need to check both conditions for an inverse. We now 
look at a way to calculate the inverse.

Let A be the general 3 × 3 matrix

 
 =  
 
 

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

A

and let its inverse be

−

 
 =  
 
 

1 2 3
1

1 2 3

1 2 3

.
x x x

y y y

z z z

A
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To find A−1 explicitly in terms of the components of A we have 
to solve

11 12 13 1 2 3
1

21 22 23 1 2 3

31 32 33 1 2 3

1 0 0
0 1 0
0 0 1

a a a x x x

a a a y y y

a a a z z z

−

     
     = = =     
     
     

AA I

i.e. we must solve the equations

11 12 13 1

21 22 23 1

31 32 33 1

11 12 13 2

21 22 23 2

31 32 33 2

11 12 13 3

21 22 23 3

31 32 33 3

1
0 ,
0

0
1
0

0
0
1

a a a x

a a a y

a a a z

a a a x

a a a y

a a a z

a a a x

a a a y

a a a z

     
     =     
     
     
     
     =     
     
     
     
     =    
    
     




for (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3), respectively. We can do this 
using the method of Section 5.2 three times, or all in one go as in the 
following example.

Example 5.3 Find the inverse of 
 
 
 
 
 

1 2 3
= 2 5 8

3 8 14
A .

We have to solve

1

1

1

1 2 3 1
2 5 8 0 etc.
3 8 14 0

x

y

z

     
     =     
     
     

To do this we construct a sequence of equivalent representations 
that reduce the matrix to the identity matrix.
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( )
( )

( )

( )
( )

2 2 11 2 3 1 0 0 1 2 3 1 0 0
3 3 12 5 8 0 1 0 0 1 2 2 1 0

3 8 14 0 0 1 0 2 5 3 0 1

1 2 3 1 0 0
3 2 2

0 1 2 2 1 0
0 0 1 1 2 1

1 2 2
1 0 1 5 2 0

2 2 3
0 1 0 4 5 2
0 0 1 1 2 1

R R

R R

R R

R R

R R

− ×   
   − × −   
   −   

 
− ×  

− 
 − 

− ×
 − −

− ×  
− −

 − 





 ,


and so finally we have

 1 0 0 6 4 1
1 3 0 1 0 4 5 2 .

0 0 1 1 2 1

R R
 −
 + − − 
 − 



  

(5.10)

The equivalent system is now

1 2 3

1 2 3

1 2 3

6 4 1
4 , 5 , 2 ,
1 2 1

x x x

y y y

z z z

−           
           = − = = −           
           −           

I I I

from which we read off (x1, y1, z1) etc. It is clear that the matrix 
to the right of the vertical bar in the final representation (5.10) 
is the required inverse, i.e.

−

− 
 = − − 
 − 

1

6 4 1
4 5 2 .
1 2 1

A
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The rule for finding A−1 is therefore: convert the matrix (A|I) 
by row operations of the above type to (I|B); if this can be done then 
A−1 exists and is equal to B.

Exercise 5.10 Find the inverse B of 
 
 =  
 − 

1 1 3
1 6 10
2 8 10

A  by the 

method indicated. Check that AB = I.

In this section, we have found a method by which we can con-
struct the inverse of any given matrix for which an inverse exists. In 
the next sections we shall find a general formula for the inverse of a 
square matrix of any size. (Note that matrix inverses are only defined 
for square matrices.) We begin with 2 × 2 matrices.

5.7. THE INVERSE OF A 2 × 2 MATRIX

We solve the general 2 × 2 system

 ax + by = h   (5.11)

 cx + dy = k   (5.12)

which can be written in matrix form as

     
=    

    
.

xa b h

yc d k
  (5.13)

Example 5.4 Show that if ad − bc ≠ 0 then the solution of 
equations (5.11) and (5.12) is

 − −
= =

− −
, .

dh bk ak ch
x y

ad bc ad bc
  (5.14)
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Alternatively, we can start from the matrix form and manipulate 
the array of coefficients as in Sections 5.2 or 5.6.

We can write equations (5.14) in a matrix form as

( ) ( )   
= − = −   − −   

1 1
, , ,

h h
x d b y c a

k kad bc ad bc

or, combining these, as

 

1x d b h

y c a kad bc

−     
=     −−        

(5.15)

Let

, x = and = .
a b x h

c d y k
     

=      
     

hA

Then equation (5.13) can be written as Ax = h and therefore 
equation (5.15) is x = A−1h. Thus, if we have a matrix

To eliminate y between the pair of simultaneous equations 
(5.11) and (5.12), we multiply equation (5.11) by d, multiply 
equation (5.12) by b, and then subtract.

dax + dby = dh,

bcx + bdy = bk.

So

dax − bcx = dh − bk,

which leads to an equation for x

−
=

−
,

dh bk
x

ad bc

as required. Similarly, to eliminate x multiply equation (5.11) 
by c, multiply equation (5.12) by a, and then subtract.
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,
a b

c d
 

=  
 

A  then we can write − − 
=  −−  

1 1 d b

c aad bc
A .

This is the general formula for the inverse of a 2 × 2 matrix.

Note that from this general form we can see that not all 2 × 2  
matrices have an inverse. Namely, if ad − bc = 0, then A−1 will not 
exist. (This is analogous to the fact that not all numbers have inverses; 
namely 0 does not have an inverse because there is no number x 
such that 0x = 1.)

To extend this to larger matrices we need to introduce the idea 
of a determinant, which we shall do in the next section.

5.8. DETERMINANTS

Definition: The determinant, written det A or |A|, of a 2 × 2 matrix 
A is defined by

 
= − 

 
det .

a b
ad bc

c d

Or, using more systematic notation,

 a
 

→ − 
 

11 12
11 22 12 21

21 22

= det = .
a a

a a a
a a

A A   (5.16)

Exercise 5.11 Find the values of

(i) det 
 
 − 

1 3
1 2

 

(ii) det 
3 1
2 1
 
  

(iii) det 
− − 
 − − 

3 2
4 3
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Example 5.5 If 

− 
 = − 
 − 

1 1 0
2 4 3
2 1 1

A ,  find det A.

Expanding by the first row as in the definition (5.17) gives

det ( )

( ) ( )

4 3 2 3 2 4
=1 det 1 det 0 det

1 1 2 1 2 1

1 7 1 4 0 3.

− −     
× − − × + ×     − −     

= × + ×− + =

A

Definition: The determinant, det A or |A|, of a 3 × 3 matrix A is 
defined by

 11 12 13
22 23 21 23

21 22 23 11 12
32 33 31 33

31 32 33

21 22
13

31 32

det det det

det

a a a
a a a a

a a a a a
a a a a

a a a

a a
a

a a

 
     = −    
    

 
 

+  
 

 
 

(5.17)

Note the alternation of signs: in general the sign of the coeffi-
cient of aij is (−1)i+j. Note also how the 2 × 2 determinants in (5.17) 
are formed: for example, we take a11, cross out the row and column 
that it is in, and this leaves the first 2 × 2 determinant on the right 
of equation (5.17).

 
  →   
  

 

11 12 13
22 23

21 22 23 11
32 33

31 32 33

det
a a a

a a
a a a a

a a
a a a

Then we do likewise with a12 and a13. The determinants of the 
(2 × 2) submatrices, obtained by taking out row i and column j, are 
called the minors, Mij, of A.
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Another way to remember how to construct the determinant of 
a 3×3 matrix is to write the first two columns on the right, and then 
draw diagonal lines as follows:

11 1211 12 13

21 2221 22 23

31 3231 32 33

a aa a a
a aa a a
a aa a a

This is called Sarrus’s rule. We sum the products along the 
southeast (top left to bottom right) lines, and subtract the products 
along the southwest (top right to bottom left) lines. It is a useful way 
to remember the terms of the determinant of a 3 × 3 matrix, but it 
does not extend to larger matrices.

det A
=  a11a22a33 − a11a23a32 + a12a23a31 − a12a21a33+ a13a21a32 − a13a22a31

5.9. PROPERTIES OF DETERMINANTS

The following properties are valid for determinants of N × N 
matrices. (Note that determinants are only defined for square matri-
ces.) We consider proofs only in the 2 × 2 case, where they involve 
only elementary algebra. In the following, A is a general N × N matrix.

Exercise 5.12

(i) Let the matrix 
 
 = − − 
 
 

0 1 2
7 3 4
1 2 3

B .  Verify that det B = −17.

(ii) For A as defined in Example 5.5, and B defined here, find 
AB and verify that

det AB = det A · det B.

Exercise 5.13 By induction, generalize the definition of a deter-
minant to N × N matrices.

– – – + + +



170 • Mathematical Physics

Property 1: If B is obtained from A by multiplying any 
one row or column by λ, then det B = λ det A. It follows that  
det(λA) = λ N det A.

Example 5.6 Prove that det(λA) = λ N det A for N = 2.

11 12

21 22

= .
a a

a a

l l
l

l l
 
 
 

A

So,

det(λA) = λa11λa22 − λa12λa21

= λ2(a11a22 − a12a21)
= λ2 det A.

Property 2: If Ã is obtained from A by interchanging a pair of rows 
or a pair of columns, then det Ã = − det A.

Exercise 5.14 Show that

     
= − = −     

     

11 12 12 11 21 22

21 22 22 21 11 12

det det det .
a a a a a a

a a a a a a

In our definition of the determinant we singled out the first 
row of the matrix. Property 2 shows that there is nothing special 
about the first row: by Property 2 we can use any row to frame a 
definition and hence to calculate a determinant. This can be used 
to simplify the calculation, e.g. by selecting a row containing one 
or more zeros.

Example 5.7 Find det 

− 
 − 
 
 

2 4 3
1 1 0
2 1 1

.

First, interchange the first and second rows; then expand 
by the top row. The zero means there are only two minors
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Property 3: If A has two rows or columns proportional then det  
A = 0. (In particular det A = 0 if two rows or columns are the same.)

(2×2 determinants) to evaluate. We have already evaluated this 
determinant in Example 5.5.

− −   
   − = − − = −   
   
   

2 4 3 1 1 0
det 1 1 0 det 2 4 3 3.

2 1 1 2 1 1

Alternative solution Expand by the second row. This is 
exactly the same calculation, but arrived at in a different way.

( ) ( )

( ) ( )

+

+

− 
−  − = − ⋅ ⋅   

  
 

− 
+ − ⋅ − ⋅  

 
= − + = −

2 1

2 2

2 4 3
4 3

det 1 1 0 1 1 det
1 1

2 1 1

2 3
1 1 det

2 1

7 4 3.

Note the signs here: recall from the definition that the 
coefficient of aij has a factor (−1)i+j.

Exercise 5.15 Show that det 11 11

12 12

0
a a

a a

l
l

 
= 

 
 and that  

det 11 12

11 12

0
a a

a al l
 

= 
 

.

Property 4: A square matrix A and its transpose AT have the same 
determinant: det AT = det A.

Exercise 5.16 Show that

   
=   

   

11 12 11 21

21 22 12 22

det det .
a a a a

a a a a
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Since transposition interchanges rows and columns, this implies 
that any statement of a property of the determinant under a row 
operation must also be valid under the equivalent column operation. 
Thus we do not have to prove row and column properties separately; 
e.g. the second result in Exercise 5.15 follows from the first as a 
consequence of Exercise 5.16. We can also expand a determinant by 
columns instead of rows.

Property 5: Adding a multiple of one row (or column) to another 
leaves the determinant unaltered.

Exercise 5.17 Show that

11 21 12 22 11 12

21 22 21 22

det det .
a a a a

a a a a

l l+ +   
=   

   

a a

Property 6: If the rows (or columns) of A are linearly dependent 
then det A = 0–i.e. if a, b, c, . . . are the rows of A, regarded as row vec-
tors, and . . .a b c 0l m n+ + + =  (with at least one of , , ,. . . 0l m n ≠ , 
 then det A = 0. (Recall the discussion of linear dependence for vec-
tors in Section 4.2.)

Example 5.8 If two vectors are linearly dependent then

11 12

21 22

0
,

0
a a

a a
l m
     

+ =     
     

and we have that

	 λa11 + μa21 = 0 and λa12 + μa22 = 0   (5.18)

with λ, μ not both 0. Show that det 
 

= 
 

11 12

21 22

0
a a

a a
.

Assume λ ≠ 0. Add (μ/λ) × row 2 to row 1. By Property 5 this 
does not change the determinant:

11 21 12 22

21 22

det =det .
a a a a

a a

m m
l l

 + + 
  
 

A
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Property 7: If A and B are square matrices of the same size, then the 
determinant of the product is the product of the determinants: det(AB) 
= det A det B.

But we know from equations (5.18) that m m
+ = = +11 21 12 220a a a a
l l

. 
Therefore

 
= 

 21 22

0 0
det = 0.

a a
A

If μ ≠ 0 we instead add λ/μ×row 1 to row 2.

Exercise 5.18 For general matrices

  
=   

   

11 12 11 12

21 22 21 22

= , ,
a a b b

a a b b
A B

show by explicit calculation of both sides that det AB = det A det B.

Property 8: A matrix A has an inverse if and only if det A ≠ 0. (A is 
then said to be non-singular.)

Here we summarize some of the important properties of 
determinants.

1.   If every element of one row (or column) is multiplied by a scalar 
λ, so is the determinant. If every element of the matrix A (N×N) 
is multiplied by a scalar λ, the determinant is multiplied by λN: 
det(λA) = λN det A.

2.   If two rows (or columns) are interchanged, the determinant 
changes sign (but not magnitude).

3.   If two rows (or columns) of A are proportional, then det  
A = 0.

4.   If the rows (or columns) are linearly dependent, then det A = 0.

5.   The determinant is unchanged if a constant multiple of one 
row (or column) is added to another row (or column).
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6.    The transpose AT has the same determinant as A: det AT = det A.

7.   If A and B are square matrices (of the same size) then 
det(AB) = det A det  

8.   A matrix A has an inverse A−1 if and only if det A ≠ 0 (mean-
ing it is non-singular).

9.  If a row or column is all zeros, then det A = 0.

5.10. SOLUTION OF 2 × 2 LINEAR SYSTEMS

In section 5.7, we found an expression for the solution of the 
general 2 × 2 system:

.
ax by h a b x h

cx dy k c d y k

+ =      
⇔ =     + =      

Using determinants we can write the solution (Equation 5.14) as

 

   
   
   = =
   
   
   

det det
, .

det det

h b a h

k d c k
x y

a b a b

c d c d   

(5.19)

This alternative form is called Cramer’s rule.

•	 If	det	
 

≠ 
 

0
a b

c d
, the system is said to be non-singular. 

In this case Cramer’s rule gives the unique solution of the 
system of equations.

•	 If	det	
 

= 
 

0
a b

c d
, the system is said to be singular. There 

are then two possibilities:
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Example 5.9 Determine whether the following system has a 
solution, and if so find every solution:

3x + 4y = 5
6x + 9y = 9

.

First check if the system of equations has a solution:

 
= ≠ 

 

3 4
det 3 0,

6 9

so the system has a unique solution. By Cramer’s rule this is

   
   

−   = = = = = = −
   
   
   

5 4 3 5
det det

9 9 6 99 3
3, 1.

3 4 3 43 3
det det

6 9 6 9

x y

The two simultaneous equations could also be solved by the 
elementary method of elimination.

1.   The system has no solution, because the contradiction 0 = 1 
can be derived.

2.  Otherwise there are infinitely many solutions.

Example 5.10 Determine whether the following system has a 
solution, and if so find every solution:

3x + 4y = 5
6x + 8y = 9

.

First check if the system of equations has a solution. A singular 
system has either no solution or infinitely many.

 
= 

 

3 4
det 0,

6 8
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Example 5.11 Determine whether the following system has a 
solution, and if so find every solution:

3x + 4y = 5

6x + 8y = 10
.

We have that

 
= 

 

3 4
det 0,

6 8
so the system is singular. Using row reduction:

3 4 5 3 4 52 (2 R1)
6 8 10 0 0 0

R   − ×
   
   



so 0 = 0 and 3x + 4y = 5; thus the system is equivalent to the 
one equation, 3x + 4y = 5. There are infinitely many solutions. 

For example, let x = t (an arbitrary number) and ( )= −
1

5 3
4

y t .

Take another look at the two equations we began with. The 
second equation is just twice the first equation, and therefore 
adds no more information than one equation alone (which then 
cannot be solved uniquely for two unknowns).

so the system is singular. Here we shall use standard row and 
column operations on the coefficients to attempt to solve the 
system. For the 2 × 2 case we could also use the elementary 
method of elimination

3 4 5 3 4 52 (2 R1)
6 8 8 0 0 2

R   − ×
   −   



from which 0 = −2, a contradiction. The system therefore has 
no solution.

Take another look at the two equations we began with. The left 
sides are the same except for a factor 2, but the right sides are 
not; hence they contradict one another.
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5.11. SOLUTION OF 3 × 3 SYSTEMS

Cramer’s rule: The solution of the general 3 × 3 linear system of 
equations

 
11 12 13 1

21 22 33 2

31 32 33 3

a a a x h
a a a y h
a a a z h

     
     =     
     
     

  
(5.20)

is

 
     
     
     
     
     = = =

1 12 13 11 1 13 11 12 1

2 22 23 21 2 23 21 22 3

3 32 33 31 3 33 31 32 3

det det det

, , .
det det det

h a a a h a a a h

h a a a h a a a h

h a a a h a a a h
x y z

A A A

 
 

(5.21)

Proof: We can write the first of equations (5.20) as

 h1 − a11x − a12y − a13z = 0.   (5.22)

We verify that (5.21) satisfies this by evaluating the left hand 
side of (5.22). We get (using property 2 from Section 5.9 to exchange 
columns, changing signs)

Exercise 5.19 For each of the following systems, determine 
whether it has a solution and if so find every solution:

(i) x + 2y  =  4

 2x + 2y  =  6

(ii) x + 2y  =  4

 2x + 4y  =  8

(iii) x + 2y  =  4

 2x + 4y  =  3



178 • Mathematical Physics

( )1 11 12 13

1 12 13 1 11 13

1 11 2 22 23 12 2 21 23

3 32 33 3 31 33

1 11 12

13 2 21 22

3 31 32

1 11 12 13

1 11 12 13

2 21 22 33

3 31 32 33

det

det det det

det

det

h a x a y a z

h a a h a a

h a h a a a h a a

h a a h a a

h a a

a h a a

h a a

h a a a

h a a a

h a a a

h a a a

− − −

   
   = − +   
   
   

 
 −  
 
 



=

A

A


 
 
 
 
 

by expanding the determinant by the first row,

= 0,

since two rows of the determinant are equal. The other two equa-
tions in (5.20) can be verified similarly. This completes the proof.

•	 		If	det	A ≠ 0, the system is said to be non-singular. In	this	case	
Cramer’s rule gives the unique solution of the system of equations.

•	 	If	det	A	=	0,	the	system	is	said	to	be	singular. There are then 
two possibilities:

1. The system has no solution, because the contradiction  
0 = 1 can be derived.

2. Otherwise there are infinitely many solutions.

Exercise 5.20

(i) Determine which of the following systems has a unique solution

2x − 3y + 3z = −2
2x − 2y + 6z = 1

x + λz = k

 for (a) λ = 6, k = 1, (b) λ = 3, k = 3, (c) λ = 6, k = 7/2.

(ii) Use Cramer’s rule to find the unique solution.

(iii) Find all the solutions in case (c).
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5.12. HOMOGENEOUS SYSTEMS

If (h1, h2, h3) = (0, 0, 0) then (5.20) can be written

Ax = 0.
We refer to this as a homogeneous linear system.

•	 		If	a	homogeneous	system	is	non-singular (i.e. if det A ≠ 0) 
Cramer’s rule gives x = 0 (i.e. x = 0, y = 0, z = 0). We say that 
the system has only the trivial solution.

•	 If	a	homogeneous	system	is	singular	(i.e.	if	det	A = 0) then there 
will be infinitely many solutions. (One might guess this since 
Cramer’s rule gives 0/0 for each of the x, y, and z. A proper proof 
can be constructed from the converse of property 6 of determi-
nants: that the rows of a singular matrix are linearly dependent; 
but we shall not stop to do this). We shall see an important  
application of this in Section 5.14.

We have stated the theory in terms of 3×3 systems, but the argu-
ment applies to any n×n homogeneous system (i.e. any system of 
the form Ax = 0 with A an n × n matrix. In particular if A is a num-
ber, a say (a 1 × 1 matrix) then ax = 0 has only the trivial solution  
x = 0 if a ≠ 0 and infinitely many solutions if a = 0. The statements 
above are just the (important!) generalizations of this result to simul-
taneous equations.

5.13. A FORMULA FOR THE INVERSE MATRIX

Let

11 12 13

21 22 23

31 32 33

= .
a a a

a a a

a a a

 
 
 
 
 

A

In Section 5.8, we defined the minor of an element of A. For 
example,

•	the	minor	of	a11 is det 
22 23

32 33

,
a a

a a
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•	the	minor	of	a12 is det 
 
 
 

21 23

31 33

a a

a a

and so on. In general, to obtain the minor of aij we cross out the 
ith row and jth column from A and take the determinant of what 
remains. We now define the cofactor of aij, call it cij:

cij = (−1)i+j × Mij where Mij is the (i, j) minor of A.

So

   
= = −   

   

22 23 21 23
11 12

32 33 31 33

det , det .
a a a a

c c
a a a a

and so on.

Using cofactors the determinant for a 3 × 3 matrix can be written 

det A = a11c11 + a12c12 + a13c13

where

( ) +  
= − =  

 

1 2 21 23
12 12 12

31 33

1 with minor det
a a

c M M
a a

and so on. The determinant of any N × N matrix can be written 
similarly as the sum of the products of the elements of any row (or 
column) with their corresponding cofactors.

Finally, we define the adjoint matrix to A, adj A, as the matrix 
constructed from the cofactors of A:

 
 
 
 
 

11 21 31

12 22 32

13 23 33

adj = .
c c c

c c c

c c c

A

Note the arrangement of rows and columns – it is the transpose 
of what you might guess.

Exercise 5.21 Verify that if A is any 2×2 matrix whatsoever, then

A(adj A) = (det A)I.
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In fact this result holds for any square matrix. From it we get a 
formula for A−1:

 
− =1 1

adj .
det

A A
A   

(5.23)

It is clear from this that A−1 exists provided A is non-singular  
(det A ≠ 0) (property 8).

Consider now the linear system

Ax= h.

If det A ≠ 0 we can form A−1. Multiplying through on the left by A−1 

we get

A−1Ax = A−1h. 

Since A−1Ax = |x = x, it follows that

x = A−1h

as the solution of the system. Thus, we see again that the system has 
a unique solution if det A ≠ 0. This is what we set out to understand 
in Section 5.1 (Equation 5.6).

5.14. EIGENVALUES AND EIGENVECTORS

Consider the linear system of equations for x

 Ax = λx  (5.24)

where A is a given matrix and λ some real number. For example, if 
A is a 2 × 2 matrix, this system would be explicitly

 a11x + a12y = λx
 a21x + a22y = λy   (5.25)

or equivalently

 a11 x + a12y − λx + 0y = 0
 a21 x + a22y + 0x − λy = 0.  (5.26)
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Putting equations (5.26) back in matrix form gives

−       
+ =       −       

11 12

21 22

0 0
0 0

a a x x

a a y y

l
l

which we can write as

Ax − λIx = 0

or

 (A − λI)x = 0,  (5.27)

where I is the identity matrix. Equation (5.24) can be written as equa-
tion (5.27) for any N × N matrix A and the N × N identity matrix I.

From Section 5.12, we know that if det(A − λI) = 0 then equa-
tion (5.27) has a unique solution, namely x = 0. This is not of any 
interest. To obtain non-trivial solutions of equation (5.24) we must 
impose the condition

 det(A − λI) = 0.  (5.28)

Since A is supposed given, equation (5.28) can be satisfied only 
if λ takes appropriate values.

Definition: A value of λ that satisfies equation (5.28) is called an 
eigenvalue of the matrix A. If λ is an eigenvalue, equation (5.24) has 
infinitely many non-zero solutions for x. These solutions are called 
eigenvectors of the matrix A (corresponding to the eigenvalue λ). 
 Not all of the (infinite number of) eigenvectors will be indepen-
dent. In fact, if A is an n×n matrix it will have at most n independent 
eigenvectors.

Example 5.12 Find the eigenvalues of the matrix

− 
 
 
 − 

0 1 1
= 1 2 1 .

1 1 2
A
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x

Ax = λx 

x λx

y

λy

FIGURE 5.1: Illustration of an eigenvector. The vector x is (left) multiplied by the matrix A 
and the result is another vector in the same direction as x but scaled in magnitude by a factor 
λ (its eigenvalue). If x is an eigenvector of A (with eigenvalue λ), then so is any multiple of this, 
i.e. αx is also an eigenvector (and it has the same eigenvalue). We often use unit eigenvectors, 
which are scaled to have unit length (x • x = 1).

The eigenvalues are solutions of det(A − λI) = 0:

( )
( )

0 1 1 0 0
det 1 2 1 0 0

1 1 2 0 0

1 1
det 1 2 1 0.

1 1 2

 −   
    −    
    −    
− − 
 = − = 
 − − 

l
l

l

l
l

l

Write out the determinant by expanding out the top row, i.e.

0 = (−λ)[(2 − λ)2 − 1] − (1)[(2 − λ) + 1] + (−1)[1 + (2 −λ)];

(2 − λ)2 − 1 is a “square minus a square” so can be factorized:

0 = −λ[(2 − λ) + 1][(2 − λ) − 1] − [(2 − λ) + 1] − [1 + (2 − λ)]; 

(2 − λ + 1) = (3 − λ) is a common factor, so we take it outside:

0 = − λ (3 − λ)(1 − λ) − (3 − λ) − (3 − λ) = − (3 − λ)[λ (1 − λ) + 2].
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Do not expand out the cubic – you will not be able to factorize 
it (unless you are given or can guess one solution). Thus,

0 = (3 − λ)(λ2 − λ − 2) = (3 − λ)( λ + 1)( λ − 2).

So the eigenvalues are λ = 3, −1 and 2.

Example 5.13 Find the unit eigenvectors corresponding to 
the eigenvalue λ = 3 in example 5.12.

The eigenvectors (x, y, z) are found by solving equation (5.27): 
(A − λI)x = 0, or

( )
( )

1 1 0
1 2 1 0 .
1 1 2 0

x

y

z

l
l

l

− −     
     − =     

    − −     

The eigenvectors corresponding to λ = 3 therefore satisfy

3 1 1 0
1 1 1 0 ,
1 1 1 0

x

y

z

− −     
     − =     
     − −     

which we can write as

−3x + y − z = 0,
x − y + z = 0,

−x + y − z = 0.

The last two equations are the same, so rearranging we get

y = x + z.

Substitute for y in the first equation, and we obtain:

−3x + (x + z) − z = 0,
from which x = 0, and hence y = z. A vector (x, y, z) with x = 0 
and y = z must be of the form (0, k, k), so the eigenvectors are 
(0, k, k), k ≠ 0.
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Note what is going on here: We have just chosen λ such that 
the equations do not have a unique solution. Therefore there is 
no point in trying to find one. A non-unique solution must contain 
an arbitrary parameter! Usually one chooses this to be one of x, y 
or z (whichever is most convenient) but any combination will do. 
Whatever choice is made, the same pair of equal and opposite unit 
eigenvectors will be obtained.

To find the unit eigenvectors we must chose k such that the 
vector length (magnitude) is unity. The length of the vector  

(0, k, k) is 22 ;k  therefore choosing 1 2k = ±  will give a vector 

of unit length. The unit eigenvectors are ( )1 2± (0, 1, 1).

Example 5.14 Find the remaining eigenvectors following 
from example 5.12.

For λ = 2 we have similarly

( ) ( )x= 2 x=0,− −A I A I

i.e.

2 1 1 0
1 0 1 0 ,
1 1 0 0

x

y

z

− −     
     =     
     −     

which gives

–2x + y – z = 0,
x + z = 0,

–x + y = 0,

from which z = –x, y = x. Thus, the eigenvectors are of the form 
(k, k, –k), 0k ≠ . The unit eigenvectors are ( )( )1 3 1,1, 1± − .

For λ = –1, similarly, the corresponding eigenvectors are 
found to be of the form (2k, –k, k). The unit eigenvectors are 

( )( )1 6 2, 1,1± − .
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Note: an N × N real symmetric matrix has N eigenvalues which 
are all real numbers (but not necessarily distinct if the eigenvalue 
equation has repeated roots). This can provide a useful check on 
your work.

Exercise 5.22 Show that λ = 1 is an eigenvalue of the matrix

1 4 4
4 1 0 .
4 0 3

− 
 − − 
 
 

Find the other eigenvalues and the corresponding eigenvectors.

5.15. MATRICES AS TRANSFORMATIONS

We can view the application of a matrix A to a vector x as either 
effecting a transformation from the vector x to the vector x¢ = Ax (an 
active transformation) or as giving the coordinates x¢ = Ax of a fixed 
vector x relative to a new coordinate system (a passive transforma-
tion). Depending on the context, different choices of A correspond to 
different active transformations or to different changes of coordinate 
system.

Rotation in the Plane
Suppose that (x, y) axes in the plane are rotated through 

an angle q to new axes (x¢, y¢). A point P acquires new coor-
dinates (x¢, y¢) which, by Figure 5.2, are related to its original 
coordinates (x, y) by

x¢ = OC = OD + DC = OD + AQ = x cos(q) + y sin(q) 
y¢ = OE = PQ − QC = PQ − AD = y cos(q) − x sin(q)

Then the change of coordinates from (x, y) to (x¢, y¢) is

x¢ = x cos(q) + y sin(q)
y¢ = −x sin(q) + y cos(q)
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x

y

P

θ

y´

x´θ

E
D

A

Q

C

O

FIGURE 5.2: Rotation of coordinates in the plane. A point P given in coordinates (x, y). The 
same point is at coordinates (x¢, y¢) in axes that are rotated (counterclockwise) by an angle q 
from the original axes.

and the change of coordinates can be written in matrix form as

 x¢ = R x,  (5.29)

where R is the matrix

( ) ( )
( ) ( )

cos sin
= .

sin cos
q q
q q

 
 − 

R

Alternatively, we may think of this as a transformation of the 
point P with coordinates (x, y) to a new point P¢ with coordinates  
(x¢, y¢) in a fixed coordinate system by rotation about the origin 
through the angle −q:

.
x x

y y

′   
→   ′   

Exercise 5.23

(i) Show that RRT = I and RTR = I, i.e. R−1 = RT.
(ii) What matrix would represent the transformation of a point 

by rotation about the origin through an angle +q in a fixed 
coordinate system?
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A square matrix satisfying R−1 = RT is said to be orthonormal or 
unitary. Rotations are represented by orthonormal matrices. The con-
verse is slightly more complicated: any transformation effected by an 
orthonormal matrix with positive determinant is a rotation. (Negative 
determinant gives a rotation followed, or preceded, by a reflection.)

Note that if the rows of a 3 × 3 matrix are r1, r2 and r3 then the 
requirement of orthogonormality can be seen equivalently to be that 
ri · rj = 0 for i ≠ j (when r1, r2 and r3 are considered as vectors) and 
that r1, r2, and r3 are unit vectors (r1 · r1 = 1 etc.).

Exercise 5.24 For the matrix R below, compute

(i) RT and

(ii) RRT.

(iii) Explain why the matrix is orthogonal.

(iv) Find the corresponding angle of rotation if this represents a 
rotation of coordinate axes:

1 2 3 2
.

3 2 1 2

 
=   − 

R

Rotation in Three Dimensions
A 3×3 orthonormal matrix (i.e. a matrix R such that RRT = I) 

with determinant +1 effects a rotation in 3D. The axis of rotation 
is the only real eigenvector of the matrix. The angle of rotation q is 
obtained from 1 + 2 cos(q) = R11 + R22 + R33 (although we shall not 
prove this here).

Exercise 5.25 Verify that the matrix

2 3 1 3 2 3
2 3 2 3 1 3
1 3 2 3 2 3

− 
 − 
 − 

is orthogonal. Show that λ = 1 is an eigenvalue of the matrix and 
hence find the axis and angle of rotation.
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Projection. The matrix transformation x¢ = Px where

1 0 0
0 1 0
0 0 0

 
 =  
 
 

P

effects a projection onto the (x, y) plane, since it gives

x¢ = x, y¢ = y, z¢ = 0. 

So any point (x, y, z) becomes

.
0

x x x

y y y

z z

′ =   
   ′→ =   
   ′ =   

Note that det P = 0. A transformation represented by a singular 
matrix P is a projection if P2 = P (i.e. repetition of the transformation 
has no further effect).

Figure 5.3 shows an example using the projection matrix

1 0 0
0 1 0 .
0 0 0

 
 =  
 
 

P

z

y

x

FIGURE 5.3: Left: an example of orthogonal projection. Points are projected onto the (x, y) 
plane using the matrix P.
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Figure 5.4 shows an example using the projection matrix

1 1
.

0 0
− 

=  
 

Q

Reflection. Reflection about a plane is another transformation 
that can be achieved by application of a matrix. In the case of reflec-
tion, the determinant of the corresponding matrix is always −1. For 
example, reflection about the line y = x is achieved by the matrix

 
=  
 

0 1
1 0

R

x

(x, y) 

y

(x-y, 0)

FIGURE 5.4: In general a projection will not be orthogonal. For example the matrix Q repre-
sents the projection in two dimensions as shown in the figure.

since then

0 1
1 0

x x y

y y x

′       
= =       ′       

so the transformation of a point (x, y) is

.
x y

y x
   

→   
   

Exercise 5.26 Verify that (in three dimensions) reflection in the 
(x, y) plane is achieved by

1 0 0
0 1 0 .
0 0 1

x x

y y

z z

′     
     ′ =     
     ′ −     
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5.16. EXTENSION: TRANSFORMATION GROUPS

Consider again the rotations in the plane from section (5.15). 
Rotation clockwise through the angle q (an active transformation) is 
effected by the matrix

( ) ( )
( ) ( )

cos sin
sin cos

q q
q q

− 
 
 

acting on the vector (x, y) (since an active transformation clockwise 
through an angle q is equivalent to a passive transformation counter-
clockwise through q.) A further rotation through q¢ will be given by 
the product

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

cos sin cos sin cos sin
sin cos sin cos sin cos

q q q q q q q q
q q q q q q q q
′ ′ ′ ′− − + − +    

=    ′ ′ ′ ′+ +    

acting on (x, y), which, as we expect, is a rotation through an angle 
q + q¢. The product of two rotation matrices is therefore always 
another rotation matrix with a different parameter (q+q¢ in this 
example). The set of rotation matrices also contains an identity 
element which leaves a vector unchanged, namely the rotation 
matrix with parameter q= 0, and a matrix corresponding to the 
inverse of any rotation, through q say, that returns us to the origi-
nal vector, namely the matrix with parameter −q .

These conditions, together with the fact that matrix multplication 
is associative (i.e. A(BC) = (AB)C), define the conditions for the set of 
matrices to form a group. We can now work backwards. Any set of matri-
ces that have the property of constituting a group will effect a rotation 
in some space. Thus we can use a group of transformations to define 
“vectors” in the corresponding space. The simplest example would be to 
go from three dimensions to n-dimensional vectors transforming under 
the n × n rotation matrices. Another example is provided by four-vectors 
in relativity, which transform under a set of matrices representing the 
Lorentz group. (These matrices are different from four-dimensional rota-
tions, so relativistic 4-vectors are not the same as “ordinary” vectors in four 
dimensions.) We can also define objects representing transformations in 
some kind of internal spaces, such as the two (complex) dimensional spin 
space of the electron, or the three-dimensional color space of quarks.



192 • Mathematical Physics

The components of the transformation matrices we have consid-
ered so far are differentiable functions of the one or more param-
eters (representing what are called Lie groups). We can also extend 
groups of transformations, such the reflections we considered above, 
which have finite numbers of elements. These represent discrete 
symmetries such as one finds, for example, in crystal structures.

Revision Notes

After completing this chapter you should be able to

•	 Solve a system of linear equations by reducing the matrix 
representation to triangular form

•	 Find the inverse of a matrix by row or column operations. 
Perform algebraic operations on matrices

•	 Find the determinant of a matrix, using the properties of 
determinants to simplify the calculation

•	 Use det AB = det A det B to find the determinant of a 
product

•	 Use the determinant of coefficients to determine whether 
a system of equations has one, many or no solutions

•	 Define and compute eigenvalues and eigenvectors

•	 Construct matrix representations of simple transformations

•	 Determine whether a given matrix is orthogonal

5.17. EXERCISES

1. If 
1 0 2
0 1 3

1 1 1

 
 
 
 − 

 find det A, and hence (or otherwise) show 

that the equations
x + 2z = 0 
y + 3z = 0

−x + y + z = 0

 have non-trivial solutions.
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2. Solve the equations

2x + 3y + 5z = 7
x + 7y + z = 6

3x + y + 2z = 9.

3. Find the values of λ and μ for which the equations

x + 2y = μ
2x + λy = 2

 have (i) a unique solution, (ii) no solution, (iii) an infinite 
number of solutions. Give expressions for the solutions 
where possible.

4. For what value(s) of λ does the system

x − 2y + z = 0
x + λ z = 0

3x + y + 2z = 0

 have non-trivial solutions?

5. Show that the product of the two matrices 
2 0 1
0 2 1
2 1 0

− 
 
 
 − 

 

and 
1 1 2
2 2 2

4 2 4

 
 − 
 − 

 is 6I, where I is the unit matrix. Hence 

(or otherwise) solve the set of linear equations

x + y + 2z = 1
2x + 2y − 2z = 3 

−4x + 2y + 4z = 5.

6. Given 
1 0 1
2 1 0

1 2 1

− 
 =  
 − − 

A  and 
3 2 1
3 0 1
2 0 1

− 
 =  
 
 

B find 

det(AB).What is det(BA)?
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7. Evaluate the determinant 

0 1 2 0
4 0 0 1
0 2 2 1

1 1 1 1

−

−
− −

.

8.  If 
1 0 1
2 2 5
3 1 2

− 
 =  
 − 

A  and 

0 1 3
1 1 1
2 1 0

 
 = − 
 − 

B  what are AB, AT, 

(ATBT)T where AT denotes the transpose of A?

9.  If 
1 0 4

1 1 0
3 1 1

 
 = − 
 − 

A  and 

1 1 2
0 0 1
4 0 1

− − 
 =  
 
 

B  find AB and 

verify by explicit calculation of both sides that det AB = det A 
det B.

10. What are the eigenvalues of the matrix 
1 2
2 3
 
 
 

 ?

11.  Verify that 
1
1
 
 
 

 is an eigenvector of 2 3
3 2
 
 
 

 and find a 

second linearly independent eigenvector.

12.  The matrix A and its eigenvalues, λ, and eigenvectors, x, 
satisfy Ax = λx. Deduce the eigenvalues of A−1.

13. A linear transformation is represented by

1 1
.

2 3
x x

y y

′ −     
=     ′     

  Find the inverse transformation and hence the equation of 
the line 2y + x = 0 in the (x¢, y¢) coordinate system.

14.  Find the eigenvalues of the matrix 

1 0 1
0 2 0

1 0 1
Q

− 
 =  
 − − 

 and find 

the eigenvector corresponding to the eigenvalue λ = 2.
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15. Show that λ = 1 is an eigenvalue of the matrix 

1 0 1
2 1 0

2 0 4
Q

− 
 = − 
 
 

. Find the corresponding eigenvector and 

the other eigenvalues.

5.18. PROBLEMS

1. Show that the eigenvalues of the matrix

1 3 0
3 2 1
0 1 1

 
 = − − 
 − 

A

 are 1, 3, and −4, and find corresponding eigenvectors. 
Verify that these eigenvectors are mutually orthogonal.

 If the eigenvectors are (x1, x2, x3), (y1, y2, y3), (z1, z2, z3) and 
a matrix P is defined as

1 2 3

1 2 3

1 2 3

x x x

y y y

z z z

 
 =  
 
 

P

 show that PAPT is a diagonal matrix.

2. Reduce to triangular form the linear equations

4x + 3y + 2z = 1 
w + 4y + 3z = 2 
2w + x + 4z = 3 

3w + 2x + y + λz = u

 where λ, u are any real numbers. For what values of λ, u 
will the equations have a solution? When is the solution 
unique? Taking u = 4, what is the solution for the cases  
λ = 0 and λ = 5?
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3. Solve the linear equations

x + 3y + 2z = 4 

2x + y + 3z = 5 

3x + 2y + (1 + μ)z = 0

 where μ is a constant, and hence show that there is a single 
value of μ for which the equations have no solution. Find 
the value of μ which makes y = 0, and find the correspond-
ing values for x and z.

4. The coordinates (x, y, z) of a point, P, satisfy the determi-
nantal equation

1
1 0 1 1

0.
2 1 0 1
1 3 2 1

x y z

=

 By working out the determinant to express the equation 
in a simpler form, show that P must lie on a certain plane. 
Verify that the point with coordinates (1, 3, 2) lies on this 
plane, and explain how this could be shown directly using 
the determinantal form of the equation.

5. Show that the matrix 
1 0 2
0 1 0
3 0 1

 
 = − 
 
 

A  satisfies the equation

( )( )( )− − − =1 2 3 0A I A I A Il l l

 where λ1, λ2 and λ3 are the eigenvalues of A and I is the 
unit matrix.

 By expanding the equation for A above into a polynomial of 
the form A3 + aA2 + bA + cI = 0, find the inverse of A.
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6. Show explicitly that the matrix

2 1 1
0 2 3
0 0 5

 
 =  
 
 

A

 satisfies the matrix equation

A3 − 9A2 + 24A − 20I = 0.

 Hence or otherwise find A−1.





CHAPTER 6
DIFFERENTIAL  
EQUATIONS 1

Differential equations are fundamental to physical science. The 
behavior of any system continuously evolving in time (the motion 
of a body subject to a force, a chemical reaction, ...) is governed by 
one or more differential equations. So is the behavior of continu-
ous systems in space. Solving the equations means finding out how 
the body moves given the forces acting, how the reaction proceeds 
given the reagents etc. Only the simplest of equations can be solved 
exactly. But these are important in developing a physical intuition for 
the sort of behavior to expect. (Conversely a good physical insight 
will provide a basis for the mathematical solution.) They are also 
used later in the derivation of approximations to the solutions of 
more complex equations. You need to develop a good understanding 
of the equations in this chapter.

6.1. WHAT ARE DIFFERENTIAL EQUATIONS?

A differential equation is an equation for an unknown function, 
y(t) say, of an independent variable (in this case t) that involves one or 
more derivatives of y with respect to t.
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The order of a differential equation is the number of the highest 
derivative appearing in it.

Example 6.1 Here are some examples of differential equations, 
from different fields.

A simple model for population growth (with λ > 0), or radioactive 
decay (with λ < 0)

 

dy
dt

l= y.
 

(6.1)

Simple harmonic motion, w a constant

 

2
2

2 .
d y

y
dt

w= −
 

(6.2)

Governor of steam turbine

 

3 2

3 23 4 2 40.
d y d y dy

y
dt dt dt

− + + =
 

(6.3)

Motion of a planet in general relativity

 

2
2

2 3 .
d u

u u
d

k
q

+ = +
 

(6.4)

Economics growth model, A, B constants

 
( )( )1 2 1 21 1 .

dr
Ar Br

dt
= + +

 
(6.5)

Geophysics, f(x) a given function of x

 
( ){ } ( )5 41 5 .

d
x f x y f x x

dx
+ =

 
(6.6)
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It might be helpful to clarify the notation that is used for differ-
ential equations. If a function y depends on time t we often write y  
instead of dy/dt, ÿ for d2y/dt2 etc. If the independent variable is not 
time but position, x, we may use “prime” symbols like y¢, y¢¢, . . . yn  
for dy/dx, d2y/dx2, . . . , dny/dxn. For example, equation (6.4) can be 
written as

u¢¢ + u = k + 3u2.

Yet another notation is to use superscript numbers to signify the 
order of the derivative; e.g. f (3)(x) means d3f/dx3 and so on. In treat-
ing the dynamics of a point particle, we often use x(t) to denote the 
position as a function of time, with x here as the dependent vari-
able. For most of this chapter we shall use x or t as the independent 
variable.

6.2. SOLVING DIFFERENTIAL EQUATIONS

So the simplest differential equations are those of the form  
y¢ = f(x), or y¢¢ = f(x), . . . , y(n) = f(x). To solve the equation means 
to determine the unknown function y(x) which will turn the equa-
tion into an identity upon substitution. All we need to do to solve 
these types of differential equations is integrate the appropriate 
number of times (not forgetting the correct number of constants 
of integration).

Example 6.2 What are the orders of equations (6.1) and (6.3)?

Equation (6.1) is first order because it contains only first 
derivatives (i.e. dy/dt).

Equation (6.3) is third order because the number of the highest 
derivative is 3 (i.e. d3y/dt3).

Exercise 6.1 What are the orders of the differential equations 
(6.2) and (6.4) to (6.6)?
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Definition: We call the solution of a differential equation that 
contains the correct number of arbitrary constants the general 
solution, y(x).

Example 6.3 Solve for y(x) the differential equation 2dy
x

dx
=

Step 1: In this simple case we can integrate both sides 
directly to find y(x)

 
( )

3
2

3
x

y x x dx C= = +∫
 

where C is a constant.

Step 2: We can then write our solution to the differential 
equation as

( )
3

3
x

y x C= +

Do not forget the constants when solving differential 
equations.

Step 3: We can check that this is indeed a solution by 
back-substitution:

( ) 3
2

3
dy x d x

C x
dx dx

 
= + = 

 

Exercise 6.2 Solve the following, and check your solutions:

(i) = ,xdy
e

dx

(ii) ( )= sin .
dy

t
dt

Do not omit step 3 to save time. On the contrary, it can save a lot of 
wasted work if you pick up a mistake at this point.
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6.3. FIRST ORDER SEPARABLE EQUATIONS

A first order differential equation is called separable if it can be 
written in the form

 
( ) ( )g ,

dy
f x y

dx
=

 
(6.7)

where f(x) is a function of x only and g(y) is a function of y only, and 
this includes cases where f or g are simply constants. Equations of this 
form can be rearranged so that all terms depending on x and all terms 
depending on y appear on opposite sides of the equation (this is the 
separation of the variables), and then integrated

 ( ) ( ) .
dy

f x dx
g y

=∫ ∫  
(6.8)

It should then be possible to find the solution y(x) that satisfies the 
differential equation.

Note that we cannot write equation (6.7) as y = g(y) ∫ f(x)dx as 
many begining students are tempted to do, because y and hence g(y) 
is a function of x.

Example 6.4 Solve for y(x) the differential equation yy¢ = x.

Step 1: We separate the variables in the equation in such a way 
that the left hand side becomes a function of y only, and the 
right side a function only of x.

,
dy

y dx x dx
dx

=∫ ∫

or

.y dy x dx=∫ ∫
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As noted in the example above, constants should be combined 
where possible so that the total number of arbitrary constants in 
the solution is immediately visible. The solution here contains 
only one arbitrary constant, however arrived at. In fact, the fac-
tor 2 in 2C is of no significance (2C, like C, can be any arbitrary 
number), so we would normally write the solution to example 6.4 
just as

y(x) = (x2 + C )1/2.

The only difference between Example 6.4 and those in Section 

6.2 is that on integration we obtain a function of y (
2

2
y here) on the 

left hand side rather than y itself. So equations that can be expressed 
in the form we are considering are known as first order separable 
equations.

Key point: Rearrange first order separable equations so that you 
have

Function of y, y¢ only = Function of x only 

(x does not appear explicitly) (y does not appear explicitly)

i.e. the LHS is a function of y only, and the RHS is a function of x 
only. Some manipulation may be required to put the equation in this 
form. For example dy/dx = x/y is equivalent to Example 6.4. To see 
this, just multiply through by y.

In this form both sides can be directly integrated.

Step 2: There is no need to include two constants of integration 
here: any constant on the left can be taken over to the right and 
included in C.

y2/2 = x2/2 + C. 

Step 3: Write the general solution. Hence

y(x) = (x2 + 2C)1/2.
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Note that each of the solutions in exercise (6.3) contains one 
arbitrary constant (and no more). This is a general rule: the solution 
to a first order equation contains at most one arbitrary constant.

Thus a first order equation is solved by some formula y = f(x, C) 
involving an arbitrary constant C. For all possible values of C we get 
all of the possible particular solutions. We will see later that solu-
tions to second order equations have at most two arbitrary constants. 
Third order equations require three arbitrary constants, and so on.

Key point: The general solution to an nth order equation must 
contain n arbitrary constants.

We will come back to particular solutions later on, in Section 6.9, 
and in Chapter 8.

6.4. LINEARITY VERSUS NON-LINEARITY

Suppose that an nth order differential equation has x as the 
independent variable and y as the unknown function. Recall that 
the nth derivative of y can be written as y(n). If the equation can be 
written in the form

 A0 y(n) + A1 y(n−1) + ... + An−1 y + An = 0,  (6.9)

where A0, A1, . . . , An may be constants or functions of x only, then it 
is called a linear differential equation. The left side of equation (6.9) 
is a linear combination of y, y(1), y(2), . . . , y(n).

However, if the A0, A1 , . . . , An terms themselves contain any of 
y, y(1), y(2) or higher derivatives, products of y (e.g. y2), powers of y 

Exercise 6.3 Solve the following first order separable equations;

(i) yy¢ = a (a given constant) for y(x),

(ii) y¢ = (1 − y2)1/2ξ1/2 for y(ξ),

(iii) t( y ) + 2 = y for y(t).
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(e.g. y1/2) or any functions of y (e.g. sin(y) or ey), then the equation 
is non-linear.

Linear equations are important examples of differential equa-
tions because:

(i) They can often be solved.

(ii) Approximations to interesting physical problems can often 
be obtained as linear equations.

(iii) When An = 0 in equation (6.9) solutions can be added to give 
new solutions (see Section 6.5).

When faced with a linear equation in the form of equation (6.9) we 
generally take An over to the right hand side and also divide through 
by the coefficient A0 of the highest order derivative y(n). Thus first and 
second order equations in this form can alternatively be written as

 y¢ + P (x)y = Q(x), (6.10)

Example 6.5 State if the following equations are linear or 
nonlinear, and why
(i) y  = λt, (ii) y¢¢ = −(sin(x))y, and (iii) yy¢ = x.

(i) y  = λt is linear because the unknown function y  
appears linearly.

(ii) y″ = − (sin(x))y is linear because the unknown func-
tions (y(x) and their derivatives) appear linearly, even 
though x does not.

(iii) yy′ = x is non-linear because it involves a product of 
unknown functions, y and y′.

Exercise 6.4 Classify the equations shown in Example 6.1 as lin-
ear or non-linear.
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and

 y¢¢ + F(x)y¢ + G(x)y = H(x),  (6.11)

where P(x), Q(x), F(x), G(x) and H(x) are referred to as the coeffi-
cients of y and its derivatives, and are functions of x only (or in some 
cases are replaced by constants; see Section 6.7). For most of the 
rest of this chapter the equations we shall look at will be linear and 
usually of first or second order.

6.5. HOMOGENEOUS VERSUS INHOMOGENEOUS

The linear differential equation y¢ + P(x)y = Q(x) is called 
homogeneous if Q(x) = 0 and inhomogeneous otherwise. Similarly, 
the linear differential equation y¢¢ + F(x)y¢ + G(x)y = H(x) is called 
homogeneous if H(x) = 0 and inhomogeneous otherwise. Some 
authors call these unforced (homogeneous) and forced (inhomoge-
neous) because the term Q(x) is often thought of as a forcing term 
for a physical system.

For example,

y¢¢ + w2y = 0 is homogeneous,  (6.12)

 y¢¢ + w2y = 2x is inhomogeneous.  (6.13)

If two solutions y = y1(x) and y = y2(x) of a homogeneous linear 
equation are known then any linear combination y = Ay1(x) + By2(x) 
(with A and B constants) is itself another solution. This is not true for 
inhomogeneous equations.

To see how this works, let us work through an example.

Example 6.6 Verify that y = sin(wx) and y = cos(wx) are 
solutions of equation (6.12) and that, if A and B are arbitrary 
constants, then y = A sin(wx) + B cos(wx) is also a solution.
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We verify that something is a solution by substitution in the 
given equation. If y = sin(wx) then

y¢ = w cos(wx), 

 y¢¢ = − w2 sin(wx). 

Substituting into equation (6.12) we see that −w2 sin(wx) +  
w2 sin(wx) = 0, and we have indeed verified that y = sin(wx) is 
a valid solution.

Following a similar method we can easily show that y = cos(wx) 
is also a solution.

Finally, we can show that the sum of the two solutions  
y = A sin(wx) + B cos(wx) is also a solution by direct substitution 
into equation (6.12)

( ) ( ){ } ( ) ( )( )
2

2
2 sin cos sin cos

d
A x B x A x B x

dx
w w w w w+ + +

( ){ } ( ) ( ){ } ( )

( ) ( )( ) ( ) ( )( )

2 2
2 2

2 2

2 2 2 2

sin sin cos cos

sin sin cos cos

0

d d
A x x B x x

dx dx

A x x B x x

w w w w w w

w w w w w w w w

   
= + + +   

   
= − + + − +

=

Therefore y = A sin(wx) + B cos(wx) is also a solution.

Exercise 6.5

(i) Verify that y = 1 and y = t are two solutions of d2y/dt2 = 0 and 
that y = A + Bt is a solution (A and B constants).

(ii) Let y = y1(x) and y = y2(x) be two solutions of y¢¢ + F(x)y¢ + 
G(x)y = 0. Show that Ay1 + By2 is also a solution for arbitrary 
constants A, B.

(iii) Given that ex and e−x are solutions of d2y/dx2 − y = 0, 
explain why it follows that sinh(x) and cosh(x) are also 
solutions.
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6.6. FINDING SOLUTIONS

We now return to Example 6.3: dy/dx = x2. The solution is the 
integral of x2. Suppose that we remember the integral of x2 is some-
thing like x3 but have forgotten whether it is 3x3 or x3/3 (this example 
is simple, but if it were more complex we might not remember the 
correct factor). We can guess a more general form, y = Ax3, and then 
solve for A. Substitution in the differential equation gives

 
{ }3 23 .

d
Ax Ax

dx
=

 
(6.14)

This is a solution if 3Ax2 = x2, i.e. if A = 1/3. (Of course, the gen-
eral solution still involves a constant of integration C.) Similarly, if 
you guess that the integral is some power of x but cannot remember 
which one, you could try y = Axn where both A and n are to be deter-
mined by substitution.

(iv) Verify that y = 2x/w2 is a solution of equation (6.13) but that  
y = 2x/w2 + 2x/w2 = 4x/w2 is not.

(v) If y = y1(x) and y = y2(x) are two solutions of the inhomoge-
neous linear equation y¢¢ + F(x)y¢ + G(x)y = H(x), what dif-
ferential equation is satisfied by Ay1 + By2, where A and B are 
constants?

Example 6.7 Solve dy/dx = x2 by trying a solution of the form 
 y = Axn + C, with A, n and C constants.

Step 1: We let y be of the proposed form and substitute it into 
the given differential equation.

y¢ = nAxn−1 = x2.

Step 2: Work out the conditions under which the proposed 
form leads to a solution. If this is not possible, then there is 
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We can use this same approach not only where we have forgotten 
an exact integral but where we perhaps never knew one, as long as 
we can guess the correct form of the solution. This may seem rather 
mysterious the first time you see it, but it is not really mystery – it 
is experience. You will gain this experience by working through this 
chapter. If you are mathematically minded you will soon remem-
ber what sort of functions satisfy what sort of equations. If you are 
physically minded you will use physical intuition to guess what sort 
of behavior to expect from a given system (as represented by a dif-
ferential equation).

But what happens if we make the wrong guess? Let us see. 
Suppose that, instead of trying y = Ax3 in equation (6.14), we guess  
y = Ax4 with A a constant. Then dy/dx = 4Ax3 = x2 if A = 1/4x. This 
is impossible. (We differentiated y assuming A was a constant and it 
has turned out not to be.) So the guess is wrong and we stop here. 
The failure tells us that we must start again with a better guess.

The final problem is that the “guesswork” does not feel like “real 
math” and we would naturally prefer to be given an algorithm to fol-
low in order to solve these types of equation (i.e. a set of instructions 
that always works). There is no algorithm. That is okay; after all inte-
gration is a process of educated guesswork too, and we have learned 
to cope with that. Solving a differential equation involves a similar 
process of educated guesswork, based on a correct identification of 
the type of equation to be solved.

no solution of the proposed form, and an alternative guess is 
required. The above condition is true if both

A = 1/n and n − 1 = 2,

that is, when

n = 3, and a = 1/3

Step 3: Finally we can write down our general solution as 

y = x3/3 + C.
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However, suppose we try to solve ( )2

lnxy e x−′ =  . We want to be 

able to solve the indefinite integral ( )2

lnxe x dx−∫ – but this cannot 

be expressed in terms of known functions. Therefore not all differ-
ential equations have solutions expressible in terms of known func-
tions. In such cases information about the solution must be obtained 
by either numerical or approximate methods, but we will not tackle 
that here.

6.7. HOMOGENEOUS LINEAR EQUATIONS

The following equation is similar to equation (6.10):

y¢ + py = 0,

but here we have a constant coefficient of y, p = constant (instead 
of a known function of x, P(x)). In addition, it is first order (it con-
tains y differentiated just once), and is linear (the left hand side is 
a linear combination of y and y¢). Also, unlike equation (6.10) it is 
homogeneous (there is no term independent of y, i.e. Q(x) = 0). It 
is also separable (it can be written as dy/y = pdx). We can therefore 
integrate it directly to obtain the general solution, as in Section 6.3.

Alternatively, we can solve it by using physical or mathematical 
intuition as the basis of a guessed solution. Let us rewrite the equa-
tion as y¢ = −py. In this form you may recognize that the equation 
looks like the radioactive decay law. So we could reasonably expect 
an exponential type solution, say y = Aeλx, where A is a constant.

Alternatively, the equation looks something like y′ = y which 
we know is satisfied if y = ex. So again we are led to try y = Aeλx. 

Exercise 6.6

(i) By trying a solution of the form y = A cos(px) solve  
y¢ = sin(2x) for y(x).

(ii) By trying a solution of the form y = (Ax+B)e2x solve y¢ = 3e2x 

for y(x).
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Differentiating, we find y′ = λAeλx and therefore, to satisfy the 
equation, we need λAeλx + pAeλx = 0. This is true if λ = −p but 
with no restriction on A. Thus the general solution in this example, 
containing one arbitrary constant, is y = Ae−px.

Let us take a look at a complete worked example.

Example 6.8 Solve y¢¢ − 4y = 0.

Step 1: This equation is second order, linear, homogeneous and 
has constant coefficients. But it is not separable. We therefore 
have to call on some other experience to solve it. Since it looks 
similar to the example we discussed above we can try an initial 
guess

y = Aeλx,

and it follows that

y¢ = Aλeλx and y¢¢ = Aλ2eλx.

Step 2: To test if our trial function really is a solution we 
substitute y and y¢¢ above into the original differential equation, 
which gives

y¢¢ − 4y = (Aλ2eλx) − 4(Aeλx) = 0.

Step 3: Divide through by Aeλx to get λ2 − 4 = 0, from which we 
can see that λ2 = 4 and λ = ±2. We have therefore found two 
solutions

y1 = Ae2x and y2 = Ae−2x.

Step 4: The general solution must contain two independent 
arbitrary constants though, A and B say, and therefore the 
general solution is written down as the sum of the two solutions  
as  follows:

y = Ae2x + Be−2x, 
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We will now look at another example where we will solve a simi-
lar second order differential equation.

where A and B are arbitrary constants. This follows because 
a linear combination of solutions of a linear equation gives 
another solution. This can be checked by substituting back into 
the differential equation.

Example 6.9 Solve y¢¢ − y¢ − 6y = 0.

Step 1: The equation is second order, linear, homogeneous 
with constant coefficients, so our experience so far tells us what 
form to try. So we try as our initial guess

y = Aeλx,

and therefore

y¢ = Aλeλx and y¢¢ = Aλ2eλx.

Step 2: To test the trial function substitute into the differential 
equation to be satisfied. Then cancel Aeλx to get the auxiliary 
equation.

y¢¢ − y¢ − 6y = Aλ2eλx − Aλeλx − 6Aeλx = 0,

λ2 − λ − 6 = 0.

This removes the x dependence so our guess was a good one. 
The resulting equation in λ is called the auxiliary equation.

Step 3: Solve the auxiliary equation for λ

( λ  − 3) ( λ  + 2) =0,

λ = −2 or λ = 3.
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It is very important to remember this method of solving differ-
ential equations with constant coefficients. Let us work through one 
more example, following the same steps to first form the auxiliary 
equation. We can then solve for λ and write the general solution.

Step 4: Substitute the values of λ to form the solutions for y. 
The two solutions are

y1 = Ae−2x and y2 = Ae3x.

Remember, the general solution involves two arbitrary 
constants since we are solving a second order equation. Hence 
the general solution is written as the sum of y1 and y2, but with 
two independent arbitrary constants

y = Ae−2x + Be3x, 

where A and B are arbitrary constants.

Example 6.10 Solve y¢¢ − 3y¢ − 4y = 0.

Step 1: First check if the equation is linear (no products of  
y, y¢, . . .)? Is it homogeneous (there is no term independent of 
y)? Does it have constant coefficients (1, −3, −4)? This method 
works only if you answer yes to all three questions. With 
experience you can do the differentiation and substitution in 
your head. For example, we try as our initial guess

y = Aeλx,

y¢ = Aλeλx and y¢¢ = Aλ2eλx.

Step 2: Form the auxiliary equation by substituting our initial 
guess into the differential equation and canceling Aeλx.

λ2 − 3λ − 4 = 0.
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Note that in these cases where one of the roots of the auxiliary 
equation is positive the general solution is unstable since the solu-
tion will tend to infinity as x → ∞.

Provided the differential equation is linear, homogeneous and 
with constant coefficients, that is all there is to finding the general 
solution. Do not try to use this method for equations which are non-
linear, inhomogeneous or which do not have constant coefficients.

6.8.  AUXILIARY EQUATIONS WITH REPEATED 
ROOTS

In the previous section, we looked at solving the auxiliary equa-
tion for examples where λ has two different values, λ1 and λ2 say. 

Step 3: Solve the auxiliary equation. And hence

(λ − 4)(λ + 1)=0,

λ= 4 or −1

Step 4: The general solution is the sum

y = Ae4x + Be−x

where A and B are independent arbitrary constants.

Exercise 6.7

(i) Show that the equation y¢¢ + 7y¢ + 12y = 0 has the general 
solution y = Ae–4x + Be–3x.

(ii) Show that this can also be written as y = e –7x/2(P cosh(x/2) + 
Q sinh(x/2)) with P = A + B, Q = B – A.

Exercise 6.8 Assuming b2 – 4ac > 0, find the general solution of 
ay¢¢ + by¢ + cy = 0 (a, b, c constants).
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Here we are going to look at the special case where we find λ has two 
equal values when we solve the auxiliary equation, or repeated roots.
Let us look at an example, following the same steps as previously.

We know that every second order differential equation must 
have a solution which contains two arbitrary constants, so there must 
be another term that contains the second constant. If we proceed 
systematically with this example we can try to find a second solution 
of the differential equation when one solution is known. We will see 
how to solve these repeated roots examples in general.

The trick is to try y = (unknown function) × (known solution). 
We try

y = u(x)e−2x, 

Example 6.11 Solve y¢¢ + 4y¢ + 4y = 0.

Step 1: Is the equation linear, homogeneous and does it 
have constant coefficients? We can answer yes to all of these 
questions and thus we begin by trying

y = Aeλx.

Step 2: Substitute y, y¢ and y¢¢ in the differential equation, and 
form the auxiliary equation

λ2 + 4λ + 4 = 0.

Step 3: Solve the auxiliary equation

(λ + 2)(λ + 2) = 0 and thus λ = −2, −2.

Step 4: Write the solution

y = Ae−2x + Be−2x 

which just combines to give y = Ce−2x.

But this cannot be the general solution because it involves only 
one arbitrary constant.
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and then calculate y¢ and y¢¢

y¢ =u¢(x)e−2x − 2u(x)e−2x,

y¢¢ =u¢¢(x)e−2x − 2u¢(x)e−2x − 2u¢(x)e−2x + 4u(x)e−2x.

Now we have to find u(x). By substituting y, y¢ and y¢¢ into the 
differential equation and canceling e−2x we can find u(x):

y¢¢+4y¢+4y = [u¢¢(x)−4u¢(x)+4u(x)]+4[u¢(x)−2u(x)]+4[u(x)] = 0.

Simplifying we are left with u¢¢(x) = 0, so that u¢(x) = A, and  
u(x) = Ax + B where A and B constants. Hence the general solution 
is

y = (Ax + B)e−2x.

In fact, you do not need to go through the whole process each 
time, if you can remember the form of the solution; you can just use 
it directly.

Key point: If the auxiliary equation has λ as a real and repeated 
root, we can try a solution of the form y = (Ax + B)eλx.

6.9. PARTICULAR INTEGRALS

Having looked at how to solve homogeneous differential equa-
tions (with constant coefficients), we are now going to see what hap-
pens when the right hand side of equation (6.9) is not zero. Consider 
a linear inhomogeneous equation of the form

 y¢¢ + fy¢ + gy = H (x), (6.15)

where H(x) is a known function of x (similar to Equation 6.11, but here 
we have constant coefficients f and g instead of known functions of  
x, F(x) and G(x)). If we can find a solution of equation (6.15) which 
has no arbitrary constants, this is called a particular integral (PI). Sys-
tematic methods do exist for finding PIs. However, in simple cases, 

Exercise 6.9 Find the general solution of y¢¢ + 6y¢ + 9y = 0.
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the best method is again to use educated guesswork. Roughly speak-
ing, we are going to try a PI of similar form to H(x). The cases that 
follow are those that occur most commonly. Remember, we assume 
throughout that f and g are constants. Thus this section explains how 
to find a PI for inhomogeneous linear equations with constant coef-
ficients. The examples below will all be for second order equations, 
but the method works similarly if the order is higher.

Case 1 Find a PI for y¢¢ + f y¢ + gy = H(x) where H(x) is a poly-
nomial in x.

Method Try a PI of the form yPI = polynomial of the same 
degree.

Example 6.12 Find a PI for

y¢¢ + 7y¢ + 12y = 24x + 26.

Step 1: First we try a polynomial of the same form as H(x)

yPI = Cx + D,

y¢PI = C and y¢¢PI = 0.

Step 2: Substitute in the differential equations

0 + 7C + 12(Cx + D) = 24x + 26.

Step 3: Since this must hold for all x we can compare coefficients 
of x0 (= 1) and coefficients of x1 (= x). So we have that

12C = 24, and 

7C + 12D = 26.

Solving these we find

C = 2, and D = 1. 

Step 4: Write down the particular integral solution

yPI = 2x + 1.
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The method fails if g = 0 in equation (6.15). In this case substi-
tuting ý ʹPI = 0 and ý PI = A in the left hand side in the example above 
would not work. The way to proceed under these circumstances is 
to multiply through by x in the original trial yPI and try again. The 
correct guess in this case is yPI = Cx2 + Dx.

Case 2 Find a PI for y¢¢ + f y¢ + gy = H(x) where H(x) = Cemx 
(C and m constants).

Method Try a PI of the form yPI = Demx.

Exercise 6.10 Find a PI of the differential equations

(i) y¢¢ – 3y¢ – 4y = –16x – 40,

(ii) y¢¢ – 2y¢ + y = x2 – 3.

Example 6.13 Find a particular integral for

y¢¢ + 7y¢ + 12y = 5e2x.

Step 1: Guess a PI of the same form as H(x) in the differential 
equation.

yPI = De2x. 

Step 2: Differentiate yPI twice

y¢PI = 2De2x and y¢¢PI = 4De2x.

Step 3: Substitute into the differential equation and solve for D.

(4D + 14D + 12D)e2x = 5e2x.

Because we have guessed a solution of the right form the factor 
e2x cancels, leaving an equation for D. Therefore

1
30 5 or

6
D D= =
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As with Case 1, sometimes this method will fail. The left hand 
side equals zero if emx is a solution of the homogeneous equation (i.e. 
the solution to y¢¢ + 7y¢ + 12y = 0, found by solving the auxiliary 
equation), in which case we cannot solve for D.

Key point: If using yPI = Demx makes the left hand side = 0, then 
the next guess is yPI = Dxemx. If this fails in the same way, the correct 
approach is to multiply through by x and try again. So, next we would 
try yPI = Dx2emx, and so on until the method works.

Case 3 Find a PI for y¢¢+fy¢+gy = H(x) where H(x) = (a + bx)emx, 
and a, b and m are constants.

Method Try a PI of the form yPI = (C + Dx)emx.

Again the method may fail (if substituting yPI = Cemx into the LHS 
gives 0). The correct guess in that case is then to try yPI = (Cx + Dx2)emx.

Case 4 Find a PI for y¢¢+ fy¢ + gy = H(x) where H(x) = a cos(mx) + 
b sin(mx), and a, b and m are constants.

Method Try a PI yPI = C cos(mx) + D sin(mx). (In Chapter 8 we 
shall look at a more efficient method.)

Step 4: Write out the PI

21
.

6
x

PIy e=

Exercise 6.11 Find a PI for each of the differential equations

(i) y¢¢ – 2y¢ + 3y = e2x,

(ii) y¢¢ + 2y¢ – 3y = ex.

Example 6.14 Find a PI for yʹʹ + 7yʹ + 12y = −3 sin(3x).

Step 1: Choose an appropriate form for yPI based on the form 
of H (x).

yPI = C cos(3x) + D sin(3x).
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Note that even though H(x) in the example above involves only 
sin(3x) (and with integer coefficient −3) we find that the PI involves 
both cos(3x) and sin(3x) (and unwieldy fractions).

Step 2: Differentiate yPI twice and substitute into the differential 
equation

yʹPI = −3C sin(3x) + 3D cos(3x),

yʹʹPI = −9C cos(3x) − 9D sin(3x).

Substituting into the differential equation we get

(−9C cos(3x) − 9D sin(3x)),

+7(3D cos(3x) − 3C sin(3x)),

+12(C cos(3x) + D sin(3x)) = −3sin(3x).

Step 3: Since the equation holds for all x we can equate 
coefficients of cos(x) and sin(x)

−9C + 21D + 12C = 0, 

−9D − 21C + 12D = −3.

Therefore C = −7D from the first equation, so 150D = −3 from 
the second. From which

1 7
, .

50 50
D C= =

Step 4: Write out the PI

( ) ( )7 1
cos 3 sin 3 .

50 50
y x x= −

Exercise 6.12 Find a PI of the differential equations

(i) yʹʹ + 7yʹ + 12y = −150 cos(3x)

(ii) yʹʹ − 2yʹ + 3y = 34 sin(2x).
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Case 5 Find a PI for y¢¢ + fy¢ + gy = H(x) where H(x) =(sum of 
functions of different types).

Method  We solve the functions separately (as per the examples 
above) and add the solutions together.

It is often useful to think of the above differential equations as 
determining the response of a physical system, described by y(x) (or 
y(t)), to a “driving force” given by the known functions of x or t on 
the right hand side. The rules show that an oscillating force produces 
an oscillating response, an exponential force causes an exponential 
response, and so on.

6.10. INHOMOGENEOUS LINEAR EQUATIONS

In Section 6.9, we found how to obtain a PI of an equation of 
the form

 y¢¢ + fy¢ + gy = H(x),  (6.16)

Example 6.15 Find a PI for

y¢¢ + 7y¢ + 12y = 5e2x + 24x + 26.

We have already found PIs for when the right hand side is  
24x + 26 and 5e2x. The solutions have been found in Examples 
6.12 and 6.13. The required PI is therefore the sum of the two 
yPI solutions for those examples

21
2 1

6
x

PIy x e= + +

Exercise 6.13 Find a particular integral for each of the following:

(i) y¢¢ + y = 2ex + x + 14

(ii) y¢¢ + 3y¢ + 2y = sin(4x)

(iii) y¢¢ − 2y¢ − 3y = 2e−x.
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with f and g constants and H(x) a known function of x. In Sections 
6.7 and 6.8, we saw how to obtain the general solution of equations 
of the form

 y¢ + gy = 0,  (6.17)

and

 y¢¢ + fy¢ + gy = 0.  (6.18)

Key point: The general solution of an inhomogeneous differen-
tial equation has two components:

(i) Solving the homogeneous part (i.e. H(x) = 0) gives the 
complementary function (CF), yCF (x).

(ii) Solving the inhomogeneous term (i.e. H(x) ≠ 0) gives the 
particular integral (PI), yPI (x).

The full general solution of the equation

y¢¢ + fy¢ + gy = H(x)

is given by the sum of the complementary function and the particu-
lar integral

yGS = yCF + yPI.

Let us now take a look at some examples of how to do this, i.e. 
solving the homogeneous part of the differential equation and add-
ing it to the particular integral to find the general solution.

Example 6.16 Find the general solution of

y¢¢ + 7y¢ + 12y = 24x + 26 

Step 1: Find the complementary function (from Exercise 6.7)

yCF = Ae−4x + Be−3x. 

Step 2: Find the particular integral (from Example 6.12)

yPI = 2x + 1.
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Here is a more detailed example.

Step 3: Write down the general solution. The general solution 
is the sum of the CF and the PI, and hence we can write yGS as

yGS = yCF + yPI = Ae−4x + Be−3x + 2x + 1.

Example 6.17 Find the general solution (CF+PI) of  
y¢¢ + 4y¢ + 4y = 2e−2x.

Step 1: Find the CF by solving the auxiliary equation. Begin 
with a guess

y = Aeλx, 

∴y¢ = Aλeλx and y¢¢ = Aλ2eλx,

λ2 + 4λ + 4 = 0.

Now we have the auxiliary equation we solve it

(λ + 2)2 = 0,

λ = −2.

The auxiliary equation has repeated roots. We know that for the 
case of repeated roots we can write down the solution directly 
as yCF = (Ax + B)eλx. This gives us the complementary function

yCF = (Ax + B)e−2x.

Step 2: Find the PI by guessing a solution of the same form as 
the RHS. If we try y = Ce−2x for a PI we will get zero when we 
substitute yPI, y¢PI and y¢¢PI back into the differential equation. 
This arises because Ce−2x is part of the CF so it cannot be a PI. 
As we have a repeated roots example, this will also be true if we 
multiply by x, as Cxe−2x is also part of the CF. So we multiply by 
x again and try

yPI = Cx2e−2x,
y¢PI = 2Cxe−2x − 2Cx2e−2x,
y¢¢PI = 2Ce−2x − 4Cxe−2x − 4Cxe−2x + 4Cx2e−2x.
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Note the strategy used above: we proceed systematically until we find 
something that works (i.e. C ≠ 0) for our particular integral. But be sen-
sible: if things start to get really complicated it is probably due to having 
made a mistake early on.

Here is an example from electrical circuit theory:

We now need to find the constant, C. We substitute yPI y¢PI and 
y¢¢PI into the equation to be solved, collect the coefficients of x 
and solve for C

y¢¢ + 4y¢ + 4y = 2Ce−2x − 8Cxe−2x + 4Cx2e−2x

+ 4(2Cxe−2x − 2Cx2e−2x) + 4Cx2e−2x,

= 2e−2x.

Collecting terms, first coefficients of x2, then x1, then x0

4C − 8C + 4C = 0,

−8C + 8C = 0,

2C = 2.

Therefore C = 1, and we have the particular integral

yPI = x2e−2x.

Step 3: Write down the general solution, which is the sum of the 
CF and PI

yGS = (x2 + Ax + B) e−2x.

Example 6.18 The equation

0

dq
R q C V

dt
+ =
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6.11. INTEGRATING FACTOR METHOD

In this section, we will introduce the integrating factor method 
for solving any first order linear differential equations.

We start with any first order differential equation of the form

 y¢ + P(x)y = Q(x),  (6.20)

where P(x) and Q(x) are known functions of x as in equation (6.10). 
We define the integrating factor as R(x) = e∫ P(x) dx, and will use this to 

describes the time dependent response of the current and 
the charge in an electical circuit comprising a resistance R, 
a capacitor C and a battery, voltage V0. Since this is a linear 
equation with constant coefficients we look for a CF of the 
form qCF(t) = aept with a a constant. This gives

Rp + 1/C = 0

hence p = −1/RC. For the PI we try qPI (t) = A. This gives 
A = CV0. Putting this together, the general solution is  
q(t) = ae−t/RC +V0 /C.

Exercise 6.14 Find the general solution of each of the following:

(i) y¢¢ − y = x

(ii) y¢¢ + 4y¢ + 3y = e−x

(iii) y¢¢ + 2y¢ + y = xe−x.

Exercise 6.15 This is another example from electrical circuit the-
ory. If we apply an alternating voltage to a circuit with a resistance 
R and capacitance C the charge on the capacitor is governed by

 
( )0 cos .

dq
R q C V t

dt
w+ =

 
(6.19)

Find the general solution for q(t).
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solve our differential equation. First we will look at a worked exam-
ple, and then discuss how the method works.

Example 6.19 The equation xy¢ − 2y = x2 is first order and 
linear. Find its general solution.

Step 1: First we divide through by the coefficient of y¢ so that 
we have our equation in the correct form

( )2 2
, so .y y x P x

x x
′ − = = −

Step 2: Next, we use P(x) to find the integrating factor, R(x)

( ) ( )
2 1

2
,

dx dxP x dx
x xR x e e e

− −∫ ∫∫= = =

therefore

( ) ( ) ( )2ln2ln
2

1
.

xxR x e e
x

−
−= = =

Step 3: Now, we multiply through by the integrating factor R(x)

2 3

1 2 1
.y y

x x x
′ − =

Step 4: We note that the left hand side is the derivative of a 

product, namely 2

1d
y

dx x
 
 
 

, and hence we can write 

2

1 1
.

d
y

dx x x
  = 
 

Step 5: Finally, we integrate both sides to obtain the general 
solution. Do not forget the constant of integration, and then 
rearrange for yGS

( )
2

1 1
= ,

= ln + ,

y dx
x x

x C

∫

and therefore    yGS = x2 ln(x) + Cx2.
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The method works for every first order linear equation. The key to 
the method is remembering how to find the integrating factor.

Proof: We need to verify that multiplying through by the integrating 
factor R(x) leads to a left hand side that can be put in the form of the 
derivative of a product. According to the rule to be proved, we first 
take the integrating factor

R(x) = e ∫ P(x) dx.

We then need to take the derivative of R(x). However, R(x) is a 
composite of two functions h(x) and g(x), say, so we need to use the 
chain rule to find R¢(x). So if we let

h(g(x)) = eg(x) where g(x) = ∫ P(x) dx,

then we can write the derivative of R(x) = h(g(x)) as

( )

( ) ( ) ( ) ( ) ( )

,

.
P x dx

dgdh
R x

dg dx

d
R x e P x dx R x P x

dx

′ =

  ∫′ = ⋅ =      ∫
So we have found that the derivative of the integrating factor is 

simply the product of the integrating factor itself and the coefficient 
of y in equation (6.20).

Now let us multiply equation (6.20) by R(x).

R(x)y¢ + R(x)P(x)y = R(x)Q(x). 

We notice that (using the product rule)

( )( ) ( ) ( )

( ) ( ) ( )

,

.

d
R x y R x y R x y

dx
R x y R x P x y

′ ′= +

′= +

This is just the left hand side of equation (6.20) multiplied by 
the integrating factor R(x), as required. Note that the left hand side 

becomes ( )( )d
R x y

dx
 every time, so there is no need to work this 
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out each time. You can use the result directly as in the following 
example.

Example 6.20 Find the general solution of x2y¢ + xy = 1/x. 

Step 1: Divide by the coefficient of y¢ (which in this case is x2)

3

1 1
.y y

x x
′ + =

Step 2: Find the integrating factor

( ) ( )
1

ln .
dx xxR x e e x∫= = =

Step 3: Multiply through by R(x)

1
.2xy y

x
′+ =

Step 4: Recall that the left side is the derivative of the product 
R(x)y

1
( ) .2

d
xy

dx x
=

Step 5: Integrate both sides, and rearrange to find the general 
solution yGS

1
,

1
.2

xy c
x

c
yGS xx

=− +

∴ =− +

Exercise 6.16 Solve by this method

(i) y¢ + y = 2

(ii) x−1y¢ − 2y = 1
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6.12. EXTENSION: SPECIAL FUNCTIONS

In this section, we look briefly at a way to derive solutions of gen-
eral linear equations with coefficients that are not constant, but instead 
functions of the independent variable. An example would be

( )
2

2 2 2
2 0

d y dy
x x x y

dx dx
a+ + − =

with a a constant. This introduces the topic of special functions. 

We know that the general solution to the equation

 y¢¢ + y = 0  (6.21)

is y = a cos(x) + b sin(x). Expanding sin and cos in a Taylor series, we 
can express the general solution as a power series:

2 4 3 5
1 ... ... .

2 4! 3! 5!
x x x x

y a b x
  
  = − + + + − + +

      

Now, if we had not already known about trigonometric func-
tions, could we have derived these series solutions? To this end, let 
us suppose that we seek a solution of (6.21) of the form

n
∞

=

= ∑
0

n
n

n

y x a x

where we have introduced the factor xn because we are assuming 
that we do not yet know that the solution can be expanded in integer 
powers. By differentiating the series we must have that

( )( ) nn n
∞ ∞

+ −

= =

″ + = + + − + =∑ ∑2

0 0

1 0.n n
n n

n n

y y n n a x a x

To find n and the coefficients an we compare powers of x. From 
xn−2 we get

v (v − 1)a0 = 0

from which n = 0 or n = 1, since we assume a0 ≠ 0. We take n = 0; 
taking n = 1 turns out to give nothing more. With n = 0 we compare 
in turn the powers of x0, x1 and xn giving
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x0 : 2a2 + a0 = 0

x1 : 3 × 2a3 + a1 = 0

xn : (n + 2)(n + 1)an+2 + an = 0

Thus

( )

2
2

/2
0

1 /2
1

even

odd

...
( 2)( 1) ( 2)( 1) ( 1)

( 1)
( 2)!

( 1)
( 2)!

n n
n

n

n

n

n

a a
a n n n n n n

a
n

a
n

−
+

−








=− = =+ + + + −

−
+

=
−

+

We deduce that

2 4 3 5

0 11 ... ... ,
2! 4! 3! 5!
x x x xy a a x   

      
= − + + − − + +

which is of the form y = a cos(x) + b sin(x), where we could now define 
sin(x) and cos(x) by the series.

Of course, defining sin and cos in this way we now have to derive 
their other properties, which is a major undertaking. However, for 
more general linear differential equations, where we do not already 
have known solutions to hand, the approach via solution in series gives 
us a way of defining new functions and determining their properties.

The most common functions studied in this way are called special 
functions. This characterization clearly leaves open which functions are 
included, but we’ll give a snapshot of some of the most common ones.

Bessel functions: The defining equation is

+ + − =
2

2 2 2
2 ( ) 0

d y dy
x x x n y

dx dx

which is satisfied by

( ) ( ) ( )
( ) ( )

+∞

=

−  = =  Γ + Γ + +  
∑

2

0

1
.

1 1 2

m m n

n
m

x
y x J x

m m n
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If n is not an integer, then J−n is a second independent solution. 
If n is an integer, then the second solution involves ln(x) so cannot be 
obtained by the series method directly.

A special case occurs when the series terminates (because a coef-
ficient – and hence all succeeding ones – equals zero). In that case we 
obtain a polynomial solution rather than a new function, but because 
of the importance of these cases, the specific polynomials are given 
names.
Hermite polynomials, Hn(x): The defining differential equation is

2
2(2 1 ) 02

d Hn n x Hn
dx

+ + − =

which, for integer n, has the polynomial solutions

H0(x) = 1, H1(x) = 2x, Hn+1(x) = 2xHn(x) − 2nHn-1(x).

Laguerre polynomials, Ln(x): The defining differential equation is

( )+ − + =
2

2 1 0n n
n

d L dL
x x nL

dx dx

which, for integer n, has the polynomial solutions

( ) ( )+ −

+ −
= = − = −

+ +0 1 1 1

2 1
1, ( ) 1 , ( ) .

( 1) 1n n n

n x n
L L x x L x L x L x

n n

Legendre polynomials, Pl(x): The defining differential equation is

2 2
2

2(1 ) 2 ( 1) ( ) 0,l l
l

d P d P
x x l l P x

dx dx
− − + + =

where l is an integer. (The use of l instead of n is conventional, arising 
from the association of Legendre polynomials with angular momen-
tum, which is customarily denoted by l in quantum mechanics.) The 
polynomial solutions are
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0 1 1 2

(2 1) ( 1)
( ) 1, ( ) , ( ) ( ) ( ).l l l

l l
P x P x x P x xP x P x

l l− −

− −
= = = −

Before the advent of computers series solutions were used exten-
sively to elucidate the properties of solutions of differential equations 
and to compute numerical solutions. Nowadays, this aspect has been 
superseded by more direct numerical methods. Nevertheless, many 
of these examples (and others) are of theoretical importance in quan-
tum mechanics and other areas of physics that involve linear differen-
tial equations.

Exercises and problems on differential equations can be found 
at the end of Chapter 8.

Revision Notes

After completing this chapter you should be able to

•	 Define the terms order, linear, homogeneous, constant 
coefficients with reference to a differential equation

•	 Explain the terms complementary function (CF) and 
particular integral (PI)

•	 State the number of constants in the general solution

•	 Find a PI and CF for a linear equation with constant 
coefficients by trial solutions of the appropriate form, 
and hence find the general solution as PI + CF

•	 Solve a linear equation of the first order by the 
integrating factor method





CHAPTER 7
COMPLEX NUMBERS 

Complex numbers, which involve the square root of −1, are an 
essential tool in physics and mathematics. It is necessary to use com-
plex numbers in many areas of study, from electronics, to quantum 
mechanics, to economics. They arise most directly from studying the 
solution to polynomial equations, but they allow us to see deep con-
nections between algebra and geometry, and between the exponen-
tial, trigonometric and hyperbolic functions. In this chapter, we will 
introduce you to some of the fundamental results and applications 
of complex numbers.

7.1. INTRODUCTION OF COMPLEX NUMBERS

Within the system of integers it is not possible to divide certain 
(in fact, most) pairs of numbers (because the result m/n is usually not 
an integer for m and n integers). We therefore introduce the system 
of rational numbers (fractions). In the system of rational numbers 
the quadratic equation x2 = 2 does not have a solution. We therefore 
introduce some extra numbers, the irrational numbers, which can-
not be expressed as fractions. The number 2  is defined such that 

( )2
2 2=  (You may be able to write down any number of more or 

less accurate approximations to 2 , as fractions or finite decimals, 
but you can’t say what 2  really is except through this definition.) 
The two solutions of x2 = 2 are then 2± . The irrational numbers 
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(including those that, like π but unlike 2,  are not solutions of alge-
braic equations with integer coefficients), together with the ratio-
nals, make up the real number system.

Now to the main point. The real number system is not large 
enough to allow us to solve every quadratic equation. For example, 
the quadratic equation

z2 + 1 = 0

has no real roots (see Figure 7.1). This is the same as saying the 
equation

 z2 = −1   (7.1)

cannot be solved by a real number. We therefore introduce another 
new type of number, call it 1−  or i.

The “number” i is defined such that i2 = −1.

You can’t say what i really is except through this definition. The 
two solutions of equation (7.1) are then z = ±i. It turns out that the 
introduction of i enables us to take the square root of any number, 
hence to solve any quadratic equation. (In fact, the introduction of  
i is sufficient to solve any polynomial equation, not just quadratics, 
as we shall see later.)

–2 –1 1 2

2
4

6

z

f (z)

FIGURE 7.1: Graph of the quadratic function f (z) = z2 + 1. As this does not cross the z-axis, 
there are no real z values for which f (z) = 0; the quadratic equation z2 + 1 = 0 has no real roots.
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Example 7.1 Find the solutions of z2 = −4.

Write z2 as the product of two numbers with known square 
roots.

z2 = 4 × (−1).

So,

( )4 1 2 2 .z i i=± × − =± × =±

Example 7.2 Find the solutions of z2 − 2z + 5 = 0.

Complete the square to get

z2− 2z + 5 = (z − 1)2 +4 =0,

which is true if

( )21 4

1 2
1 2 .

Z

Z i

z i

− = −
− =±

= ±

An alternative method is, of course, to use the formula for the 
roots of a quadratic equation: i.e. if

( ) ( )

( )

2 4 20 / 2

2 1 16 / 2

1 2

z

i

 = − − ± − 
 = ± − × 

= ±
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An expression of the form x + yi is called a complex number. The 
complex number x + i0 is the same as the real number x. The com-
plex number 0 + yi is called pure imaginary and is written as yi. For 
a complex number z = x + yi, the real number x is called the “real 
part of z,” while the real number y is called the “imaginary part of z.” 
Note that we refer to the imaginary part as y and not iy. This way of 
writing complex numbers – as x + yi – is called the standard form.

If z = x + yi we write

x = Re(z),

(or sometimes ( ),x z=ℜ  with an “R” in the Fraktur typeface), the 
real part of z. And we write

y = Im(z)

(or sometimes ( ),y z=ℑ  with an “I” in the Fraktur typeface), the 
imaginary part of z.

Two complex numbers z1 = x1 + y1i and z2 = x2 + y2i are equal if, 
and only if, their real and imaginary parts are equal (i.e. if x1 = x2 and 
y1 = y2). This is called equating real and imaginary parts.

Exercise 7.1 Find, in the form x + yi, all solutions of the quadratic 
equations

(i) z2 − 6z + 25 = 0

(ii) 2z2 + 2z + 5 = 0.

Example 7.3 What are u and v (assumed real) if u2 + 2uvi = 
25 + 30i?

Equate the real and imaginary parts

u2 = 25 ⇒ u = ±5 

2uv = 30 ⇒ v = ±3.

Put only the corresponding values together

u = 5, v = 3 or u = −5, v = −3.
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7.2. OPERATIONS ON COMPLEX NUMBERS

The result of any combination of algebraic operations on com-
plex numbers is a complex number because it can always be reduced 
to an expression of the form x + yi.

Arithmetic
Let z1 = x1 + y1i and z2 = x2 + y2i be two complex numbers. In the 

following list we put the result of an algebraic operation on z1 and z2 
in standard form (x + yi).

1.  Addition: z1 + z2 = (x1 + x2) + (y1 + y2)i

2.  Subtraction: z1 − z2 = (x1 − x2) + (y1 − y2)i

3.  Negative: −z1 = −x1 − y1i = −x1 + (−y1)i

4.  Multiplication: z1 × z2 = (x1 + y1i)(x2 + y2i) = (x1x2 − y1y2) + 
(x1y2 + y1x2)i

The basic rule of complex algebra is: treat complex numbers as if 
real but replace i2 by −1.

There is no need to memorize the formula for (x1 + y1i)(x2 + 
y2i), since it comes immediately from multiplying out (to give x1x2 + 
x1y2i + y1x2i + y1y2i2) putting i2 = −1, and collecting real and imagi-
nary parts.

Exercise 7.2 Write in standard form (x + yi) each of

(i) (2 + 3i) + (7 − 6i),

(ii) (9 − 3i) − (7 − 6i),

(iii) (2 + 3i)(7 − 6i).

Exercise 7.3 Work out [z − (2 + 3i)] × [z − (2 − 3i)] and hence 
find the solutions of z2 − 4z + 13 = 0.

Example 7.4 By working out the real and imaginary parts of 
both sides, show that z1z2 = z2z1 (so complex numbers may be 
multiplied in any order). We say that multiplication of complex 
numbers is “commutative.”



240 • Mathematical Physics

Let z1 = x1 + y1i , z2 = x2 + y2i. Then

z1z2 = (x1 + y1i)(x2 + y2i).

Multiply out and put i2 = −1 to get

= x1x2 – y1y2 + (x1y2 + y1x2)i.

Interchange the order, since reals can be multiplied in any 
order. 

= x2 x1 − y2y1 + (x2y1 + y2x1)i

= z2z1.

The final equality follows by symmetry: there is no need to 
multiply out z2z1 explicitly because it can be obtained from z1z2 
by interchanging 1 and 2 throughout.

Exercise 7.4 By working out the real and imaginary parts of both 
sides, show that z3(z1 + z2) = z3z1 + z3z2 (multiplication of complex 
numbers is “distributive”).

Complex Conjugate
If z = x + yi we define the complex conjugate of z to be

 z* = x − yi.   (7.2)

Thus, to obtain the complex conjugate of a complex number, 
simply replace i by −i. Other notations you may come across are z  
and z†. The complex conjugate of a complex number is an important 
concept that occurs frequently.
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We see that a complex number multiplied by its complex conju-
gate gives a (positive) real number. The complex conjugate of a real 
number x is simply x (real).

Example 7.5 Verify that if z = x + yi, then zz* = x2 + y2. Use 
equation (7.2) to write the complex conjugate, and then 
multiply out, putting i2 = −1.

zz* = (x + yi)(x − yi)

= x2 − (yi)2 + xyi − xyi

= x2 − (y)2(−1)

= x2 + y2.

Exercise 7.5 By considering the real and imaginary parts show 
that

(i) ( )1 2 1 2 ,z z z z∗ ∗ ∗+ = +

(ii) ( )1 2 1 2z z z z∗ ∗ ∗= .

These are useful results: the conjugate of a sum of two complex 
numbers is the sum of their conjugates; the conjugate of the prod-
uct of two complex numbers is the product of the two conjugates.

Exercise 7.6 Write each of the following in standard form  
(x + yi), and find their complex conjugates.

(i) (1−i)4

 (ii)
  

3
1 3
2 2

i
 
− + 
 

 (iii)  
3

1 3
2 2

i
 
− + 
 



242 • Mathematical Physics

Division
The procedure for division of two complex numbers is similar to 

that for multiplication. We write the complex numbers in standard 
form, z1 = x1 + y1i and z2 = x2 + y2i, take the ratio and manipulate the 
result into a simpler form.

1 1 1 1 2 21

2 2 2 2 2 2 2

.
x y i x y i x y iz

z x y i x y i x y i
+ + −

= = ×
+ + −

The trick is to multiply top and bottom by 2 2 2 ,z x iy∗ = −  as in the 
expression on the right, which will give an expression with a real num-
ber as the denominator

1 2 1 2 1 2 1 2
2 2 2 2
2 2 2 2

x x y y y x x y
i

x y x y
+ −

= +
+ +

provided z2 ≠ 0. The method is important. It enables you to write a 
complex fraction in the standard form x+yi. Rather than remember-
ing this formula it is better to derive the result directly in each particu-
lar case as shown next.

Example 7.6 Express 
5

3 2
i
i

+
+

 in the standard form x + yi.

We multiply top and bottom by the complex conjugate of the 
bottom

2

2 2

5 5 3 2
3 2 3 2 3 2

15 3 10 2
3 2

17 7 17 7
.

13 13 13

i i i
i i i

i i i

i
i

+ + −
= ×

+ + −

+ − −
=

+
−

= = −



Complex Numbers  •  243

Exercise 7.7 Write 
2 5
2 3

i
i

−
+

 in the standard form x + yi.

Exercise 7.8 Show that ( )* * *
1 2 1 2 2/ / if 0.z z z z z= ≠

Now we know how to multiply and divide complex numbers we 
can compute the inverse of a complex number. If z ≠ 0, then

 

*

* 2 2 2 2

1 1
.

yz x
i

z z z x y x y

 −
= = + 

+ +    

(7.3)

Hence every complex number z (≠ 0) has an inverse. From this 
it follows that if z1z2 = 0, then z1 = 0 or z2 = 0. (Proof: suppose z1 ≠ 0; 
then we can multiply through by 1/z1 to get z2 = 0.)

Exercise 7.9 Verify that the product of a complex number with 
its inverse is unity: (1/z) × z = 1.

Now we can summarize the rules of algebra for complex 
numbers.

1. Addition: z1 + z2 = (x1 + x2) + (y1 + y2)i

2. Subtraction: z1 − z2 = (x1 − x2) + (y1 − y2)i

3. Multiplication by real number: az1 = ax1 + ay1i

4. Multiplication: z1 × z2 = (x1x2 − y1y2) + (x1y2 + y1x2)i

5. Conjugation: z* = x − yi.

6. Division: 
*

*
1 2 1 2 1 2 1 21 1 2

2 2 2 2
2 2 2 2 2 2 2

x x y y y x x yz z z
i

z z z x y x y

 + −
= = + 

+ + 

7. Inverse: 
*

* 2 2 2 2

1 1 yz x
i

z z z x y x y

 −
= = + 

+ + 
.
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7.3. QUADRATIC EQUATIONS

We have seen how to solve any quadratic equation, az2 + bz + c = 0, 
with real coefficients, a, b, and c, by means of the formula

 
( )2 4

,
2

b b ac
z

a

− ± −
=   (7.4)

and if 4ac > b2 you use i to take the square root of the negative number.

Suppose, however, that one or more of the coefficients a, b or 
c is complex. We can still use this formula. But is the square root of 
a complex number a complex number, or do we have to introduce 
further new numbers into our scheme? Let us start with the simplest 
example, the square root of i itself.

Example 7.7 Solve z2 = i (i.e. find the square root of i).

Let z = x + yi with x and y real (assuming that the result will be 
a complex number)

( )22

2 2 2

z x yi

x y xyi i

= +

= − + =

Equate real and imaginary parts

x2 − y2 = 0, and 2xy = 1

These simultaneous equations have two real solutions,

1 / 2, and 1 / 2, or

1 / 2, and 1 / 2.

x y

x y

=+ =+

=− =−
Therefore

1 1
or

2 2 2 2
i i

z z= + =− −
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We have therefore shown that the square root of i is another 
complex number, not something new. Taking the square root of a 
general complex number is more difficult. The following shows two 
ways of doing it; we shall give a systematic method for finding all 
roots later on (and they will all turn out to be complex numbers).

Example 7.8 Solve z2 = −5 + 12i (i.e. find the square root of 
−5 + 12i).

Let z = x + yi, with x and y real

z2 = (x + yi)2

= x2 − y2 + 2xyi = −5 + 12i

Equate real and imaginary parts and solve for x and y

x2 − y2 = −5 and 2xy = 12

∴ y = 6/x and x2 − 36/x2 = −5

Multiply through by x2 and factorize the resulting quadratic for x2

x4 + 5x2 − 36 = 0,
(x2 + 9)(x2 − 4) = 0.

∴ x2 = −9 or x2 = 4

x2 = −9 is impossible for x real. Hence x = +2, and y = 6/x = +3, 
or x = −2 and y = 6/x = −3. Therefore

z = 2 + 3i or z = −2 − 3i.

Alternative Solution: Proceed as before to find x2 − y2 and xy 
by equating real and imaginary parts.

x2 − y2 = −5 and 2xy = 12

We can solve these by a trick which avoids the need to solve

a quadratic equation. The trick is to find x2 + y2 in terms of the

already known x2 − y2 and xy.
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( ) ( ) ( )
( ) ( )

( )

2 2 22 2 2 2

2 2

2 2

2

5 12 169

169 13

x y x y xy

x y

+ = − +

= − + =

+ = =

Now we can solve for x2 or y2. Adding the above equation to 
(x2 − y2) = −5 we get

2x2 = 13 − 5 = 8, ∴ x = ±2

And so, using 2xy = 12 we get

y = 6/x = ±3 

Putting this all together

z = 2 + 3i or z = −2 − 3i.

Exercise 7.10 Use one of these methods to find the square root 
of 5 + 12i.

Since we now know how to find the square roots of a complex 
number we can now solve any quadratic by using the standard for-
mula. We know az2 + bz + c = 0 has roots

 

( )2 4
.

2

b b ac
z

a

− ± −
=   (7.5)

Example 7.9 Solve z2 − (2 − i)z + (2 − 4i) = 0. 

The solution of the quadratic equation is

( ) ( ) ( )( )

( ) ( )

2

1/2

2 2 4 1 2 4

2

2 5 12
.

2

i i i
z

i i

− ± − − −
=

− ± − +
=
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To obtain (−5 + 12i)1/2 we have to solve w2 = −5 + 12i (see 
example 7.8):

(−5 + 12i)1/2 = ±(2 + 3i).

Therefore

( ) ( )2 2 3
2

i i
z

− ± +
=

2 or 2 .z i z i= + = −

Exercise 7.11 Deduce from the solution of Example 7.9 that

z2 − (2 − i)z + (2 − 4i) = (z − (2 + i))(z + 2i)

and verify the result by multiplying out the right side. 

Exercise 7.12 Solve the quadratic equations

(i) z2 − (2 + 2i)z + (2i − 16) = 0

(ii) z2 − (4 + i)z + (5 + 5i) = 0.

7.4. THE ARGAND DIAGRAM

The complex number z = x+yi can be represented by the point 
(x, y) in the plane. This graphical representation of complex num-
bers is called the Argand diagram. Essentially, we use the real and 
imaginary parts of a complex number as coordinates. See Figure 7.2.

Example 7.10 Indicate the position of 3 − 4i in the Argand 
diagram.

This will be the point (3, −4) shown in Figure 7.2.
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–4 –2 2 4

–4
–2

2
4

x

y

z = 3 – 4i    

(a)

2 4

2
4

x

y

z1

z2

z1+ z2

(b)

FIGURE 7.2:  (a) Argand diagram for the complex number z = 3 − 4i. (b) Argand diagram 
showing the addition of two complex numbers z1 + z2. Note that the real part is along the 
horizontal axis (x = Re(z)), the imaginary part is along the vertical axis (y = Im(z)).

Figure 7.2(b) shows an Argand diagram for the sum of two com-
plex numbers. The real and imaginary parts each add to form a third 
complex number, just as the components of (Cartesian) vectors add 
in two-dimensional space. Figure 7.3(a) shows an Argand diagram 
for a complex number and its conjugate. When we form the con-
jugate we swap the sign of the imaginary part, which is a reflec-
tion about the x-axis in the Argand diagram. Figure 7.3(b) shows 
an Argand diagram for a complex number z and the same number 
multiplied by i repeatedly: z, zi, −z and −zi. Each multiplication by i 
rotates the point in the Argand diagram by 90 degrees (π/2 radians) 
about the origin, in the counterclockwise direction. Clearly there is 
a close connection between complex numbers and two-dimensional 
geometry, especially rotations and reflections.

Exercise 7.13 Indicate the positions in the Argand diagram of the 
following complex numbers. (You will need to rewrite the complex 
numbers in the standard form x + yi; refer to Exercise 7.6.)

(i) 2 + 5i

(ii) (1 − i)4

(iii) 
2

1 3
2 2

i
 
− + 
 

(iv) 
3

1 3
2 2

i
 
− + 
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2 4

2
4

z

z*

x

y

(a)

2 4

−−
4

–2

−−
4

–2

2
4

z

iz

–z

–iz

x

y

(b)

−−4 –2 −−4 –2

FIGURE 7.3: (a) Argand diagram for the complex number z = 2 + 4i and its conjugate z* = 
2- 4i. (b) Argand diagram showing the complex number z = 2 + 4i and the complex numbers 
obtained by repeated multiplication by i: z, zi, −z and −zi.

7.5.  MODULUS AND ARGUMENT 
OF A COMPLEX NUMBER

The modulus of the complex number z = (x + yi) is

 |z| = (x2 + y2)1/2.   (7.6)

The modulus of z is the distance of (x, y) from the origin in the 
Argand diagram. Alternatively, we have

 |z| =(z*z)1/2,   (7.7)

from Example 7.5, and hence

 |z|2 = z*z.   (7.8) 

This can be very useful in manipulations.

Example 7.11 Show that |z1z2| = |z1||z2|.

This can be shown by putting z1 = x1 +y1i, z2 = x2+y2i. However, 
the result involves only the complex numbers and not their 
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real and imaginary parts. Therefore we use our alternative 
expression for |z|, namely |z|2 = zz*. (In this form we avoid the 
awkward square root.)

( )( )
( )( )

*

* *

* *

2
1 2 1 2 1 2

1 2 1 2

1 1 2 2

2 2
1 2 .

z z z z z z

z z z z

z z z z

z z

=

=

=

=

Therefore

|z1z2| = |z1||z2|.

Exercise 7.14 Show that, for any complex numbers z1 and z2,

11

2 2

.
zz

z z
=

Exercise 7.15 Find | z | if

(i) 3 ,z i= − +

(ii) ( )2
3 ,z i= − +

(iii) 
1 3

.
1

i
z

i
+

=
+

If the complex number z ≠ 0 is represented by the point  
P = (x, y) in the Argand diagram, then the argument of z, arg(z), 
is the angle from the x-axis to the line OP joining point P with the 
origin O. See Figure 7.4:

 
( ) 1arg tan .

y
z

x
−  =  
    

(7.9)
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θ

r

x

y z

(a)

x

y

π/4

−3π/4

π/4 + 2π

z

−z

(b)

FIGURE 7.4:  (a) A complex number z in the Argand diagram, showing its modulus and 
argument (r, q) and its real and imaginary parts (x, y), which are polar coordinates and Car-
tesian coordinates in the Argand diagram, respectively. (b) The Argand diagram for z = 1 + i 
and − z = −1 − i. The argument is defined up to multiples of 2π. The argument of z is π/4 or 
π/4 + 2π = 9π/4 etc.; the argument of −z is − 3π/4 or −3π/4 + 2π = 5π/4 etc.

This formula needs to be used carefully to obtain a correct angle 
from the inverse tan. For example, arg(1 + i) = tan–1(1) = π/4, but 
arg(−1 − i) = tan–1(1) = −3π/4. (See Figure 7.4(b).) Note also that 
arg(z) is many-valued: we can add arbitrary multiples of 2π and get 
the same argument. If z = 0 then arg(z) is not defined.

Exercise 7.16 Find the modulus and argument of 1 − i and 
3 i− − .

From Figure 7.4(a) we see that (|z| , arg(z)) are the polar coor-
dinates of z in the Argand diagram. So write r = |z|, 𝜃 = arg(z). Then 
x = r cos(𝜃), y = r sin(𝜃) and we get the polar representation of a 
complex number

 z = r(cos q + i sin q).   (7.10)

This is important. We can use the polar (r, q) or Cartesian (x, y) 
representation, or both, as convenient.
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Example 7.12 Write z = 1 + i in the form r(cos θ + i sin θ). 

We know that r = | z |, so compute this first.

( )1/21 1 2.z = + =

Then write the given z in the form ( )2 ×  ; the expression in 
parentheses must be (cos(q) + i sin(q)). Alternatively use the 
formula for the argument (equation 7.9) q = tan-1(1).

1
2 ,

2 2

2 cos sin .
4 4

i
z

i

 = + 
 
    = +        

p p

7.6. THE COMPLEX EXPONENTIAL

We shall show that for real q:

 ei𝜃 = cos(q)+ i sin(q).   (7.11)

This result relates the exponential and trigonometric functions 
through complex numbers, and is enormously useful in physics and 
mathematics. It is known as Euler’s equation. (The equation is also 
true for complex q.)

Proof:  We have (from Chapter 2), that
2 3 4

1 ....
2! 3! 4!

x x x x
e x= + + + + +

So, putting x = iq,
2 3 4

1 ....
2! 3! 4!

i i
e iq q q qq= + − − + +

Exercise 7.17 Indicate the positions of the complex numbers i, 
1 3i− ,  1 3i− −  on the Argand diagram and write each of them 
in the form r(cos(q) + i sin(q)).
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We collect the real terms and the imaginary terms together

2 3

1 ... ... ,
2! 3

i
q qq

   
= − + + − +   
   

and notice these are the series expansions of cos(𝜃) and sin(𝜃). 

= cos(𝜃) + i sin(𝜃).

Example 7.13 Show that ( ) ( )1
cos

2
i ie eq qq −= + .

e−i𝜃 is obtained from ei𝜃 either by complex conjugation 
(replacing i by −i) or by letting q → −q.

eiq = cos(q) + i sin(q), 

e−ie = cos(q) − i sin(q).

Hence

eiq + e−ie = 2cos(q)

∴  ( ) ( )1
cos

2
i ie eq qq −= +  

Exercise 7.18 Show that sin(q) = (eiq − e −iq)/2i.

We therefore have expressions for sin and cos in terms of com-
plex exponentials

 

( ) ( )

( ) ( )

1
cos

2
1

sin .
2

i i

i i

e e

e e
i

q q

q q

q

q

−

−

= +

= −
  

(7.12)

Exercise 7.19 What, in their simplest forms, are

(i) eiπ/2,

(ii) eiπ,

(iii) e2πni (n = 0, ±1, ±2,...),

(iv) |ei𝜃 |.
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Exercise 7.20 Show that ei𝜃1 = ei𝜃2 if (and only if) q2 = q11+2nnπ 
(n = 0, ±1, ±2 ...).

Exercise 7.21 Show that

cosh(q) = cos(iq), sinh(q) = −i sin(iq),

and that

cos(q) = cosh(i), sin(q) = −i sinh(iq).

This explains the similarities (and differences) between the 
identities involving the trigonometric and hyperbolic func-
tions.

Comparing equations (7.11) and (7.10) we see that any complex 
number can be written in the form

 z = rei𝜃   (7.13)

where r = |z| and q = arg(z). This form is very useful for taking 
products and roots of complex numbers as the following examples 
show.

Example 7.14 If z = reiq (z ≠ 0), find z −1:

z−1 = (reiq)−1 = r−1e−iq.

Example 7.15 If z1 = r1 eiq1 and z2 = r2eiq2 find z1z2, |z1 z2| and

arg(z1z2).

z1z2 = r1r2eiq1 eiq2 = r1r2eiq1+ iq2= r1r2ei(q1+q2) 

So |z1z2| = r1r2 and arg(z1z2) = q1 + q2.
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We see from this example that to form the product of two com-
plex numbers we multiply the moduli and add the arguments.

–2 –1 1 2

–2
–1

1
2

x

y

θ
θ/2

r

z

z1/2

z1/2

r1/2

FIGURE 7.5:  The Argand diagram showing a complex number z and its two square roots, z1/2.

Exercise 7.22 If 1
1 1

iz r e q=  and 2
2 2

iz r e q=  (z2 ≠ 0) find 1

2

z
z

, 1

2

z
z

and arg 1

2

z
z

 
 
 

Example 7.16 If z = reiq find z1/2 and indicate the positions of 
the square roots of z on the Argand diagram.

z1/2 = (reiq )1/2 = ±r1/2eiq/2.

See Figure 7.5. (Remember the ±: there are two square roots!)

Exercise 7.23 Let 1 3z i= + . By expressing z in the form reiq, 
find z1/2 and show your result on the Argand diagram.
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7.7. DE MOIVRE’S THEOREM

Since (cos(q) + i sin(q))n = (eiq)n = einq = cos(nq) + i sin(nq), we 
have another fundamental result, known as de Moivre’s theorem,

 (cos(q) + i sin(q))n = cos(nq) + i sin(nq).   (7.14)

valid for n = 0, ±1, ±2, …. This can be used to give a proof of various

complicated-looking identities.

Example 7.17 Show that 4 cos3(q) = cos(3q) + 3 cos(q).

Since the left hand side involves cos3(q) we try putting n = 3 in 
de Moivre’s theorem.

(cos(q) + i sin(q))3 = cos(3q) + i sin(3q).

Then multiply out the left side

cos3(q) + 3i cos2(q) sin(q) + 3i2 cos(q) sin2 (q) + i3 sin3 (q)
 = cos(3q)+ i sin(3q). (7.5) 

Equating real parts (we have no further use for the imaginary 
parts)

cos3 (𝜃) − 3cos(q) sin2(q) =cos(3q). 

Replace sin2(q) by 1 − cos2(q) and we have

4cos3(q) − 3cos(q) = cos(3q).

Alternative method: We can use the exponential form of 
complex numbers to obtain this identity more directly.

From equations (7.12)

( )

( )

3
3

3

1
4cos 4

2
1

.
2

i i

i i

e e

e e

q q

q q

q −

−

  = +   

= +



Complex Numbers  •  257

Now expand this using the binomial theorem

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )

3 2 2 33

3 3

3 3

1
4cos 3 3

2
1

3 3
2
1 3
2 2
cos 3 3cos .

i i i i i i

i i i i

i i i i

e e e e e e

e e e e

e e e e

q q q q q q

q q q q

q q q q

q

q q

− − −

− −

− −

 = + + +  

 = + + + 

   = + + +   

= +

Exercise 7.24 Show that sin5(q) = (sin(5q) − 5sin(3q) + 10 sin(𝜃))/16.

Exercise 7.25 Let Cn stand for the sum 1 + cos(q) + cos(2q) + ... 
+ cos[(n − 1) q]. The aim of this question is to find a closed-form 
expression for the sum of this series to n terms.

(i)  Use de Moivre’s theorem to show that Cn is the real part of

( ) ( )2 1
1 .

ni i ie e eq q q −
+ + + +

(ii)  This is a geometric progression. Identify the common ratio 
and hence obtain its sum.

(iii)  Deduce that Cn is the real part of 
1
1

in

i

e
e

q

q

 −
 

− 
.  Show that

( )
( )

/2 /2 /2

/2 /2 /2

1
1

in in inin

i i i i

e e ee
e e e e

q q qq

q q q q

−

−

−−
=

− −

and hence that

( ) ( ) ( )( ) ( ) ( )
( )

sin 21
1 cos cos 2 cos 1 cos

2 sin 2

nn
n

q
q q q q

q
− 

+ + + + − =  
 



This section has shown that one of the many uses of complex 
numbers is in obtaining real trigonometrical identities. These can 
also be established without the use of complex numbers, but often 
not so simply.
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7.8. THE ROOTS OF UNITY

We are familiar with the idea that the solution to z2 = 1 is z = ±1 
so 1 has two square roots. Now that we know about complex numbers 
we can solve the more general equation zn = 1. The complete set of n 
complex solutions are the nth roots of unity.

Example 7.18 Show that z3 = 1 is solved by z = 1, w, w2 where 
w = e2πi/3. (These are the cube roots of unity.)

Begin by noting that z3 = 1 = e2πi = e4πi are three equivalent 
ways of writing 1. They give different cube roots. Any other way 
(e.g. e6πi) will repeat one of these. So

z = 1, e2πi/3, e4πi/3.

The cube roots are written as 1, 𝜔 and 𝜔2 where w = e2πi/3, and 
𝜔2 = e4πi/3.

Exercise 7.26 Show that z4 = 1 is solved by z = 1, 𝜔, 𝜔2, 𝜔3, 
where 𝜔 = eπi/2, and that zn = 1 is solved by z = 1, 𝜔, 𝜔2,..., 𝜔n–1 

where 𝜔 = e2πi/n.

Plot the cube roots of 1 and the fourth roots of 1 in the Argand dia-
gram and describe where the nth roots lie.

7.9. ROOTS OF REAL POLYNOMIALS

If P(z) is a polynomial with real coefficients and if z0 is a root, i.e. if 
P(z0) = 0, then 0z∗  is also a root, i.e. ( )0 0P z∗ = . Thus:

The roots of a real polynomial are either real or occur in complex 
conjugate pairs

Proof: 
Let

P (z) = anzn + an−1zn−1 + . . .  + a0,
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where a0, a1, . . .  an are real coefficients. Taking the complex con-
jugate of this equation gives

( )( ) ( ) ( )1
1 0 ,n n

n nP z a z a z a
∗ ∗∗ ∗ ∗ − ∗

−= + + +

since the conjugate of a sum of complex numbers is the sum of 
the conjugates of the summands (see Exercise 7.5). Now, noting that 
(qm)* = (q*)m for integer m we can write this as

( ) ( ) 1

1 0 .
n n

n na z a z a
−∗ ∗ ∗ ∗ ∗

−= + + +

And since all the am’s are real ( )m ma a∗ =  we have

= an(z*)n + an−1(z*)n−1 + . . .  + a0 

= P (z*)

But P(z0) = 0, so (P(z0))* = 0, and hence ( )0 0P z∗ =  This means 
that 0z∗  is a root if z0 is a root.

Exercise 7.27 Why does this proof fail if an, an−1,..., a0 are not 
real?

7.10. ROOTS OF COMPLEX POLYNOMIALS

Remainder theorem: Let Q(z) be a polynomial with complex 
coefficients. (Of course, this includes the case when the coefficients 
are in fact real.) Then

z0 is a root of Q(z) = 0 if and only if z − z0 is a factor of Q(z).

Proof: If (z − z0) is a factor of Q(z) then Q(z) = (z – z0)P(z) for some 
polynomial P(z) and hence Q(z0) = 0. Conversely, if Q(z0) = 0 then 
Q(z) = Q(z) − Q(z0) and each pair of terms of the same degree is 
divisible by (z − z0).

Fundamental theorem of algebra: There is at least one complex 
number, z0 say, such that Q(z0) = 0; i.e. every complex polynomial 
has a root.
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This is a remarkable result (and not easy to prove rigorously). 
Turn back to example 7.1 to remind yourself that it is not true for 
real numbers. But once we have introduced the solution, i, of one 
real quadratic equation, z2+1 = 0, we can, in principle, solve all poly-
nomial equations. The “in principle” is important − no explicit for-
mulae exist for general equations higher than quartic, even though 
we know the roots always exist.

Exercise 7.28 Deduce that every polynomial has a complete  
factorization into linear factors,

Q(z) = an(z − z1) (z − z2) ... (z − zn)

and that every real polynomial has a complete factorization into 
some product of real quadratic factors and real linear factors.

Exercise 7.29 Given that z = 1 + i is a root of the equation

z4 − 8z3 + 24z2 − 32z + 20 = 0 

find the other three roots.

7.11. EXTENSION: COMPLEX VARIABLE

We have already met some very simple examples of functions of 
a complex variable; z2 and z  are examples. If z = x + iy as usual, 
we can write z2 = (x2 − y2) + 2xyi, that is in the form f(z) = u(x, y) + 
iv(x, y) where u and v are real functions of the real variables x and 
y. To extend the calculus from real to complex functions, we need to 
be able to differentiate f(z) with respect to z. To see that this restricts 
the possible choices of u and v consider the function F obtained by 
putting u = x and v = 0. If we now let z vary keeping x constant, we 
get ( ) ( )( )

0
/ lim / 0

z
dF dz F z z F z z

d
d d

→
= + − =  if instead we let z vary 

keeping y constant, we obtain, similarly, dF/dz = 1. To ensure that 
the limit is independent of how we approach it, it can be shown that 
u and v must satisfy

and .
u v u v
x y y x
∂ ∂ ∂ ∂

= = −
∂ ∂ ∂ ∂
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These are called the Cauchy-Riemann relations. You can check 
that they are satisfied by f (z) = z2 but not by F(z) = x. (Informally, 
we can see that F is not a function of z only, but of both z and z* 
since x = (z + z*)/2.)

Differentiable functions of a complex variable are called analytic 
functions. They have some remarkable properties. For example, if 
f (z) is an analytic fucntion in some region Ω, it satisfies Cauchy’s 
theorem

( ) 0f z dz =∫

where the integral is taken around a circle in Ω with center z0. 
(To do the integral around a circle of radius R put z = z0 + Reiq, dz = 
iReiq dq and integrate with respect to q from 0 to 2π. The theorem 
is true for any closed curve, not just circles, but the technique for 
evaluating the integral is then more complicated.)

The theorem can be used to prove Cauchy’s integral formula for 
an analytic function:

( ) ( )
0

0

1
.

2
f z

f z dz
i z z

=
−∫p

A function analytic in an annulus,1 A, centered on a point z0, can 
be expanded as a Laurent series (the generalization of Taylor series 
for analytic functions):

( ) ( ) ( )
( )

2 1 2
0 1 0 1 0 2

0 0

b b
f z a a z z a z z

z z z z
= + − + − + + + +

− −
 

where z lies within the annulus. (If f(z) is analytic within a disc 
centered on z0, that includes z0, then the bn will all be zero.) Cauchy’s 
formula can be used to show that

( )
( )

( )
( )1 1

0 0

1 1
, ,

2 2n nn n

f z f z
a b

i iz z z z+ − += =
− −∫ ∫ p p

1An annulus is the region between two concentric circles.
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Revision Notes

After completing this chapter you should be able to

•	 Add, subtract, multiply and divide complex numbers 

•	 Find the complex conjugate of an algebraic expression

•	 Find the real and imaginary parts of a complex algebraic 
expression

•	 Solve quadratic equations with real or complex 
coefficients

•	 Find the argument and modulus of a complex number 
and indicate it on the Argand diagram

•	 Express a complex number in the form

z = r(cos(q) + i sin(q)) = reiq

•	 Recall ( ) ( ) ( ) ( )1
cos , sin / 2

2
i i i ie e e e iq q q qq q− −= + = −

•	 Quote de Moivre’s theorem and use it to derive 
trigonometric identities

•	 Find the nth roots of unity

where the integrals are taken around closed curves within the 
annulus A, and that

 ( ) 12 .f z dz ib=∫ p   (7.16)

The quantity b1 is called the residue of f(z) at z0. Equation (7.16) 
can be used to evaluate integrals which are often difficult to obtain 
by other means. (The technique is called contour integration.)
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7.12. EXERCISES

1. Write in the form x + iy, where x and y are real, the com-
plex number u/v, where u = 1 + 7i, v = 1+ i ,  and verify that 
(i) |x + iy| = |u| / |v|, (ii) x – iy = u* / v*.

2. Write in the form x + iy, where x and y are real, each of the 
complex numbers w = (2 + 3i) / (1 + i), z = 3eiπ/4, and their 
conjugates w*, z*.

3. Write the complex number 1 3i= − +w  in the form rei𝜃 
where r > 0 and −π < q < π, and indicate its position on the 
Argand diagram.

4. Show the positions of the circle |z| = 5 and of the particu-
lar complex number z0 = −3 + 4i and of 0z∗  in the Argand 
diagram, and also indicate the approximate positions of the 
two square roots of z0.

5. Show the positions of the circle |z| = 5 and of the particular 
complex number z0 = 5 − 12i in the Argand diagram, write 
down the values of |z0| and tan(arg z0), and indicate the  
approximate positions of the two square roots of z0.

6. Indicate the positions of the complex numbers z1 = 1 + i 
and 2 2z i=  in the Argand diagram, verify that they are at 
an equal distance from the origin, and explain why  
arg(z1 + z2) must be 3π/8.

7. Write the complex number z = − 1 + 2i in the form rei𝜃

where r = |z| > 0 and −π  < q < π, expressing q  in terms of 
the number a = tan–1 2. Show that z* = 5 / z. Also indicate 
the positions of z, z* and z2 on the Argand diagram.

8. Express each of the complex numbers z1 = 1 − i and z2 = i 
in the form rei𝜃 where r > 0,−π  < q < π, and indicate their 
positions in the Argand diagram. What is z3, if 0, z1, z2, z3 
form a parallelogram?

9. Express the complex number (1 + i) / (3 + 4i) in the form  
x + iy where x and y are real. Show that if it is written in the 
form reiq where r > 0 and−π < q ≤ π then 2 / 5r = , and 
determine q correct to two decimal places.
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10. Given that z = x + iy (where x and y are real) and  
z2 = 3 + 4i, find the values of x2 − y2 and xy. Hence show 
that X = x2 satisfies the quadratic equation X2 − 3X − 4 = 0 
and find the two possible values for x.

11. Find the three cube roots of 2 and indicate their positions 
in the Argand diagram.

12.  From the binomial expansion of (eiq + e−iq)4 deduce that

8 cos4(q) = cos(4q) + 4 cos(2q) + 3.

7.13. PROBLEMS

1. Solve the quadratic equation z2 − 5iz − 7 + i = 0, expressing 
each of the two roots in the form x + iy with real x and y, 
and hence factorize the left hand side of the equation.

2.  (i)  Describe how the successive coefficients in the binomi-
al expansion of (1 + x)n can be calculated; in particular 
write down the expansion of (1 + x)5 and hence that of 
(u + v)5.

 (ii)  Derive the formula eiq= cos(q) + i sin(q) from the power 
series expansions of eiq, cos(q) and sin(q). Hence show 
that (eiq + e−iq) / 2 = cos(q).

 (iii) From the last formula, or otherwise, deduce that

( ) ( ) ( ) ( )( )5 1
cos cos 5 5cos 3 10cos .

16
q q q q= + +

3. Show that if z = reiq = r cos(q) + ir sin(q)  then

 Im(ez) = ercos(q) sin(r sin(q))   (7.17)

 and also give the real part of ez. By taking the imaginary 
part of the expansion of ez in ascending powers of z, deduce 
from (7.17) that

( ) ( ) ( ) ( ) ( )2 3
cos sin 2 sin 3

sin( sin sin ....
2! 3!

r r r
e r rq q q

q q= + + +  
 (7.18)
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  Regarding q as constant, use (7.18) to evaluate the limit

( ) ( )( )cos

0

1
lim sin sin ,r

r
e r

r
q q

+→

 and also verify that the same answer is obtained when 
l‘Hôpital’s rule is applied instead.

4.  Show that if (a + bi)2 = 5 − 12i, where a and b are real, 
then a2 − b2 = 5 and a2 + b2 = 13, and find the two square 
roots of 5 − 12i. Hence solve the quadratic equation

z2 − 3z + 1 + 3i = 0,

 and also factorize the left side. How could it have been eas-
ily noticed that z − i is a factor?

5. Let 𝜃 be an arbitrary real number, and 𝜙 = 𝜃/2.

 (i) Verify that 1 + eiq can be written as 2ei𝜙 cos(𝜙).

 (ii) By treating the expression

( ) ( ) ( )1 cos cos 2 cos 3
2 3n

n n
C n q q q

   
= + + +   

   

( )cos nq+ +

 where n is a positive integer, as the real part of a binomial 
expansion, show that

Cn = (2 cos(ø))n cos(nø).

 (iii)  If 
2 4
3 3

q< <
p p

what is the behavior of Cn as n → ∞?

6.  Verify that if x and y are real numbers with y > 0, and

 ( )
1/21/22 21

2
p x x y = + +    and ( )

1/21/22 21
2

q x x y = − + +  

then p2 − q2 = x and 2pq = y and therefore p + iq is a square 
root of x + iy. Hence show that the two square roots of 
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2 2 3z i= − + are ( )1 3i± + . Verify this by writing z in the 
form reiq and finding r1/2eiq/2.

 Solve the quadratic equation 2 3
2 1 0.

2
z z i

 
+ + − = 

 
7. Verify that z = i is a root of the equation

z3 + (2 + i)z2 − (1 + 4i)z − 2 + 3i = 0,

 and hence find the other roots. Indicate the positions of the 
roots in the Argand diagram.

8. Evaluate the sum ( )
1

0

exp 2 /
N

n

ipn N
−

=
∑ p  where p and N are 

integers (≥ 1), for the cases when p ≠ 0 and p = 0. By put-
ting p ≠ k – k ′and p = k + k′ where k, k′ are integers and  
k ≠ 0, k′ ≠ 0, show that

 

1

0

, ,2 2
cos cos 2

0 otherwise

N

n

N
k kkn k n

N N

−

=

 ′=′     =    
    

∑ p p

 
 (7.19)

 
1

0

, ,2 2
sin sin 2

0 otherwise

N

n

N
k kkn k n

N N

−

=

 ′=′     =    
    

∑ p p
  (7.20)

 
1

0

2 2
sin cos 0.

N

n

kn k n
N N

−

=

′    =   
   

∑ p p
  (7.21)

 What are the values of these sums when k = k′ = 0?

9.  Given that ( )
0

exp
!

n

n

z
z

n

∞

=

=∑ ,  where z is a complex num 

ber, write down the series expansion of exp(xeiq) where x 

and q are real. Hence sum the series ( )
0

cos
!

n

n

x
n

n
q

∞

=
∑  and 

( )
0

sin
!

n

n

x
n

n
q

∞

=
∑ . By equating the coefficients of a suitable 

power of x, use your results to express cos (4q) and sin(4q) 
as sums of powers of sin(q) and cos(q).



CHAPTER 8
DIFFERENTIAL  
EQUATIONS 2

In Chapter 6, we learned different methods for solving some first 
order and second order differential equations. Having worked 
through the topic of complex numbers in Chapter 7 we can now see 
what happens if we are faced with complex roots in an auxiliary equa-
tion. We will also demonstrate the use of complex numbers to simplify 
the solution of certain types of differential equations. First though, 
we will show how to constrain the physical problem which a given 
differential equation represents, by setting initial and/ or boundary 
conditions. By doing this we fix the value of the arbitrary constants 
that appear in the general solution of a differential equation.

8.1. BOUNDARY AND INITIAL CONDITIONS

We have learned in Chapter 6 that the general solution to an nth 
order differential equation contains n arbitrary constants. In physi-
cal applications of the differential equation these constants are then 
fixed (and found) by imposing realistic conditions on the solution 
and / or its derivatives at specified values of the independent variable 
(say position x or time t). This can be done if we understand how the 
system that is represented by the differential equation behaves at a 
given time or position, e.g. at t = 0 or x = 0.
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Example 8.1 Find the solution for y(t) of 2 0y yw+ =  such 
that at t = 0, y(0) = 0 and (0) 0y = , where y  means dy/ dt and ÿ 
means d2y / dt2 and so on. (In a physical application t might be 
time and the conditions would represent the given position and 
speed at an initial instant.)

First we need to find the general solution. In this particular 
case we have found the solution in Section 6.5 of Chapter 6, 
with t here replacing x.

yGS = A sin(wt) + B cos(wt).

(This is the equation for simple harmonic motion.) Now we can 
apply the given initial conditions. These are specified at t = 0, 
so we must find the value of our general solution yGS evaluated 
at t = 0.

yGS(0) = A sin(0) + B cos(0) = A × 0 + B × 1 = B.

We are given y(0) = 1 and therefore, B = 1. Now we must 
differentiate the general solution to get y GS,

( ) ( ) ( )cos sin .GSy t A t B tw w w w= −

We are given (0) 0y = ; therefore at t = 0

( )0 1 0 0,GSy A B Aw w= × − × = =

hence,

A = 0.

Finally, we substitute A = 0 and B = 1 in the general solution. 
This is then the required solution which satisfies the differential 
equation and also the extra conditions imposed at t = 0 (it is 
often useful to check this). Thus

y= A cos(wt).
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Note that the first step is to obtain the general solution, by any 
of the methods that you have learned so far (or will learn in future). 
Once you have done this, you can then apply the initial or boundary 
conditions.

Key point: When the conditions imposed are values of the solu-
tion and its derivatives for the same value of the independent variable 
then these are called initial conditions. This is the case in examples 
8.1–8.3 and in Exercise 8.1. The independent variable is often time, 
and the conditions are often imposed at t = 0, as in Example 8.1 
above. When the conditions are values of the solution for different 
values of the independent variable, as in Exercise 8.2, then these are 
called boundary conditions.

Let us now look at another example of how to apply initial con-
ditions where we have already previously obtained the general solu-
tion in the exercises in Chapter 6.

Example 8.2 Solve y″ + 7y′ + 12y = 19 + 12x subject to the 
initial conditions y(0) = 1 and y′(0) = 2, given the general 
solution yGS (x) = Ae−4x + Be−3x + x + 1.

For this example we are able to start from the given general 
solution. This is the same as the example already solved in 
Section 6.7.

The general solution, yGS, is the sum of the CF and the PI,

    yGS(x) = yCF+ yPI,

    yGS(x) = Ae− 4x+ Be−3x+ x + 1.

We are going to need y′GS, to get y′GS(0), and

y′GS = −4Ae− 4x− 3Be− 3x+ 1.

Now we can apply the initial conditions. We substitute x = 0 in 
the general solution and set yGS(0) = 1,

yGS(0) = (A × 1) + (B × 1) + 0 + 1 = A + B + 1.
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Then,

yGS(0) = A + B + 1 = 1 or A = −B.

Now apply the condition that y′GS(0) = 2 in a similar way, and 
solve for A and B:

y′GS(0) = (−4A × 1) − (3B × 1) + 1, 
= −4A − 3B + 1 = 2.

This gives

−4A − 3B = 1.

From above, A = −B, so B = 1, and A = −1. Finally, we 
substitute the values of A and B into the general solution. Thus 
our solution is

y = −e−4x+ e−3x+ x + 1.

We are now going to look at a complete example, where we will 
begin by finding the general solution of a second order, linear, inho-
mogeneous equation.

Example 8.3 Solve y″− y = ex subject to the conditions  
yGS(0) = 0 and y′GS(0) = 1.

First we need to find the general solution. We do this by first 
finding the CF when

y″ − y = 0.

As this is linear and homogeneous with constant coefficients 
we try

yCF = Aeλx,
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then

y′CF = λAeλx, 
  y″CF = λ2Aeλx.

Next we substitute back into the differential equation, and 
form the auxiliary equation

 λ2Aeλx − Aeλx = 0.

Then, canceling Aeλx,

λ2 − 1 = 0,
      ⇒ λ= ±1.

Finally we can write the complementary function

yCF = Aex+ Be−x.

Now, to find a PI our first thought is to try yPI = Cex, but 
unfortunately this will not work because it is part of the CF (try 
it and see what happens). Recall from Section 6.9 that when 
this happens we multiply by x and try again.

yPI = Cxex,
       y′PI = Cex + Cxex,

           y″PI = 2Cex + Cxex.

Substituting this into the differential equation we can solve for 
C, and hence find yPI. As y″− y = ex, we have

                     (2Cex+ Cxex) − (Cxex) = ex, 
  2Cex = ex.
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Therefore we find that C = 1/2, and we can write the PI as 
follows:

1
.

2
x

PIy xe=

We can write the general solution as the sum of yCF and yPI:

1
.

2
x x x

GSy Ae Be xe−= + +

To apply the initial conditions we also need y′GS so let us derive 
that next:

1 1
.

2 2
−′ = − + +x x x x

GSy Ae Be e xe

We are given that y(0) = 0 and y′ (0) = 1. Substitute x = 0 in yGS, 
and then in y′GS:

   yGS(0) = (A × 1) + (B × 1) = A + B = 0,

( ) ( ) ( ) 1 1
0 1 1 1 1.

2 2GSy A B A B′ = × − × + × = − + =

Finally we can solve for A and B and substitute them back into 
the general solution, yGS. From above we have A + B = 0 and 
A − B = 1/2. Adding these together we get

1
2

2
A = , leading to 1

4
A =  and 1

4
B A= =- - .

Finally, substituting into the GS gives

1 1 1
.

4 4 2
x x xy e e xe= -- +
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Key point: Note that the initial or boundary conditions are 
applied to the general solution as a whole, and not just to the CF 
or PI separately. The first step in solving a differential equation is 
always to find the general solution.

Since the general solution to an nth order equation contains n 
arbitrary constants, n initial or boundary conditions are required to 
find the solution.

Exercise 8.1 Solve the equation y″ − y= x for y(x), subject to the 
initial conditions y= 0 and y″ = 0 at x = 0.

Exercise 8.2 Solve the equation z g=-  (where g is a constant) 
subject to the following boundary conditions:

(i) z = 5 at t = 1 and z = 4 at t = 2,

(ii) = 0z  at t = 2 and z = 0 at t = 3.

Exercise 8.3 Solve the following for y(x) subject to the specified 
conditions. (See Exercise 6.14).

  (i)  y″ − y = x subject to y(0) = 1, y′(0) = 2,

 (ii)  y″ + 4y′ + 3y = e−x subject to y(0) = 0, y′(0) = 2,

(iii)  y″+ 2y′ + y = xe−x subject to y(0) = 0, y(1) = 1/e.

In the examples that we have looked at so far, we have applied 
initial or boundary conditions to second order differential equations. 
The method we have discussed here however applies to any type 
of differential equation, and is the method to follow in general. In 
the next example, we shall see how to apply the conditions to a first 
order differential equation, where we will begin by using the inte-
grating factor method to find the general solution.
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Example 8.4 Solve 2
1y y

x
=¢ +  subject to y= 0 at x = 1.

The equation is first order but not separable, and does not 
have constant coefficients, so we will use the integrating factor 
method here to find the general solution. We begin by writing 
down the integrating factor, R(x).

( ) )

( ) ( )2ln2 ln 2

2
exp ,

.
xx

R x dx
x

e e x

=

= = =

æ ö÷ç ÷ç ÷çè øò

We then multiply the differential equation by the integrating 
factor, R(x),

2 2 22
,x y x y x

x
=¢ +

and recognize that the left hand side is equivalent to the 
derivative of the product (R(x) × y) (see Section 6.11):

(x2y)′= x2.

We now integrate both sides to obtain our general solution, 
yGS(x). We have

3
2 ,

3
x

x y C= +

so that the general solution, which contains one arbitrary con-
stant, C, is

2 .
3
x C

y
x

= +

We can now impose the boundary condition: at x = 1,  
yGS (1) = 0, so

  
( ) 2

1
1 0

3 1GS

C
y = =+

and 
1

and .
3

C =-
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We are often interested in how physical systems behave for very 
large values of the independent variable. In such circumstances we 
might set the boundary conditions at ±∞, where our general solu-
tion approaches a given value(its asymptotic value). Let us look at an 
example of how this is done.

The solution to this differential equation for the given boundary 
condition is therefore

3

2 2

1 1
.

3 3 3
x x

y
x x

= =
-

-

Exercise 8.4 Solve y′ − 2xy = x subject to y= 0 at x = 0.

Example 8.5 Find the solution of 2

1y
y

x x
=¢-  such that  

y(x) → 0 as x → ∞.

The equation is first order but not separable, and does not have 
constant coefficients, so we will again use the integrating factor 
method to solve the equation. We begin by writing down the 
integrating factor, R(x).

( )

( ) ( )1lnln

1
exp ,

1
.

xx

R x dx
x

e e
x

=

= = =
-

-

æ ö- ÷ç ÷ç ÷çè øò

We then multiply through by the integrating factor

2 3

1 1
,

y
y

x x x
=¢-

which can be written as

3

1
.

y
x x

=
¢æ ö÷ç ÷ç ÷çè ø
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Let us try one more example of this before we move on.

Integrating both sides and rearranging gives

1
.

2GSy Cx
x

=- +

In order  that y → 0 as x → ∞ we must have C = 0, so the 
required solution is

1
.

2
y

x
=-

Example 8.6 Find the general solution of ÿ − y = 0 such 
that y → 0 as t → +∞ and hence find the solution satisfying  
y(0) = 1 that remains bounded (i.e. does not take arbitrarily 
large values) for all t ≥ 0.

The equation is linear, homogeneous and has constant 
coefficients so we try y = Aeλt. Then

2

,
.

t

t

y Ae

y Ae

l

l

l
l

=
=





Next we substitute into the differential equation and form the 
auxiliary equation

λ2Aeλt − Aeλt = 0. 

Canceling Aeλt we have

λ2 − 1 = 0,  so  λ = ±1.

Hence we can write down the general solution, which has two 
arbitrary constants.

yGS = Aet + Be−t.
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8.2.  AUXILIARY EQUATIONS WITH COMPLEX 
ROOTS

The second part of this chapter is going to address solving dif-
ferential equations which involve complex numbers in one way or 
another. Here you will need to use the knowledge gained from work-
ing through Chapter 7. We are going to begin by continuing the 
work started in Section 6.7 on homogeneous linear equations, and 
have a look at what happens if the roots of the auxiliary equation are 
complex numbers.

But we have been asked to write down the general solution 
such that y → 0 as t → + ∞. For yGS above, we can see that  
y → ± ∞ as t → + ∞ unless A = 0. If A = 0 the condition is 
satisfied, as e–t → 0 as t → + ∞. Thus,

yGS = Be− t.

Now we can apply the boundary condition y(0) = 1. At t = 0,  
y(0) = Be0 = B = 1. Hence

y = e− t.

Exercise 8.5 Find the solution of y″ + 2y′ − 3y = e−x satisfying 
y(0) = 0 that tends to zero as x → +∞.

Example 8.7 Find the general solution of y″ + y = 0.

This is a second order, linear equation with constant 
coefficients;  hence we try

            y = Aeλx,
            y′ = λAeλx, and y″ = λ2Aeλx.

Substituting into the differential equation, we form the 
auxiliary equation
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  λ2Aeλx + Aeλx = 0,
λ2 + 1 = 0,

λ2 = −1 thus λ = ±i.

The general solution contains two arbitrary constants 

yGS = Aeix + Be− ix.

Recall from Euler’s equation (see Section 7.6) that

     eiq = cos(q) + i sin(q) and, 
e−iq = cos(q) − i sin(q).

Hence we can rewrite our general solution in terms of sin and 
cos as follows:

 yGS = A(cos(x) + i sin(x)) + B(cos(x) − i sin(x)), 

      = (A  + B) cos(x) + i(A  − B) sin(x), 

      = a cos(x) + b sin(x).

Here we have written a = A + B and b = i(A  − B). If y is 
required to be real (which it often is) then a and b will be real. 
Solving for A and B we get

( ) ( )1 1
, .

2 2
A a ib B a ib= - = +

There is no need to go through all of the details every time we 
use this technique. The following example is similar but shows you 
how to set out the solution correctly and succinctly.

Example 8.8 Find the general solution of y″ + 4y = 0.

The equation is linear, homogeneous and with constant 
coefficients so we try y = Aeλx (and hence y″ = λ2Aeλx as in 
previous examples). Substituting in the results for y and y″, 
then canceling factors of Aeλx, we have the auxiliary equation
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Note that in the examples above we have found that the complex 
roots of our auxiliary equations are both of the form ±bi. This has 
allowed us to write the general solution yGS directly as a real function 
of cos and sin, instead of a function of complex exponentials. In the 
next example we will see what happens when the complex roots are 
of the form a ± bi.

λ2Aeλx + 4Aeλx = 0, 

              ⇒λ2 = −4, 

      So λ = ±2i.

We can write the general solution in explicitly real form with a 
and b as the arbitrary real constants, as in Example 8.7 above.

yGS = Ae2ix + Be− 2ix, 
               yGS = a cos(2x) + b sin(2x).

Example 8.9 Find the general solution of y″ + 8y′ + 20y = 0.

The equation is linear, homogeneous and with constant 
coefficients so we try y = Aeλx (and hence y′ = λAeλx, and  
y″ = λ2Aeλx as in previous examples).

 
2 8 20 0,x x xAe Ae Ael l ll l+ + =

            2 8 20 0,l l+ + =

      ( )8 64 80 / 2 4 2 .il = − ± − = − ±

We can then write the general solution, with A and B as two 
arbitrary constants

yGS = Ae(− 4 + 2i)x + Be(− 4 − 2i)x.

This is the same as

yGS = Ae−4xe2ix + Be−4xe−2ix, 
    = e−4x[Ae2ix + Be−2ix].
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Key point: If the auxiliary equation has real coefficients but com-
plex roots, the roots will be of the form λ = a ± ib with a and b real. We 
can then directly write the general solution of the form yGS = Ae(a+bi)x  
+ Be(a−bi)x in terms of real functions as yGS = eax[a cos(bx)+ b sin(bx)]. 
Here a and b are related to A and B as a = A + B and b = i(A − B).

Here is an example from electric circuit theory.

We can again write the complex exponential terms in real form 
using Euler’s equation, with arbitrary constants a and b

yGS = e−4x[a cos(2x) + b sin(2x)].

Example 8.10 The charge q(t) on the capacitor in a circuit 
with a resistor, capacitor and inductor in series is governed by

 
2

2 0.
d q dq

L R q C
dt dt

=+ +  (8.1)

where R, C and L are positive constants and R2 < 4L/C. Find 
the charge as a function of time.

For a trial solution q = Aeλt the auxilliary equation is

Lλ2 + Rλ + 1/C = 0. 

This is a quadratic equation that can be solved to give

 
1/2

21 4
.

2 2
R L

R
L L C

l =
æ ö÷ç- ± - ÷ç ÷çè ø

 (8.2)

If (R2 − 4L/C) < 0, then the roots are complex numbers, and 
we can write this as

 

1/2
2

1/22

2

1 4
, where

2 2

1
.

4

c c

R L
i R

L L C

R
LC L

l w w  = − ± = − 
 

 
= − 
 

 (8.3)
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8.3. EQUATIONS WITH COMPLEX COEFFICIENTS

We can use the same approach to solve a linear, homogeneous 
equation with constant complex coefficients. In this case the solu-
tion will turn out to be complex. When we are dealing with a com-
plex function we use z instead of y.

Then the solutions have the form e(-R /2L±iwc)t, and the general 
solution is

q(t) = e− Rt/2L (Feiwct + Ge− iwct).

Or, using the relation that eiwct= cos(wct) + i sin(wct), we can 
write the equivalent form

 q(t) = e− Rt/2L (Acos(wct) + B sin(wct)),  (8.4)

where the constants A and B (or F and G) are determined by 
the initial values of the charge and the current in the circuit.

Exercise 8.6 Show that the general solution of y″ + 2y′ + 5y = 0 
is y = e−x(a cos(2x) + b sin(2x)).

Exercise 8.7 Find the general solution of y″ + y′ + 5
2

y = 0.

Exercise 8.8 Find the general solution of y″′ − 2y″ + 3y′ − 2y = 0  
given that one solution is y = ex.

Example 8.11 Find the general solution of z″ − iz = 0.

The equation is linear, homogeneous and with constant 
coefficients so in the usual way we try z = Aeλx (and hence  
z′ = λAeλx, and z″ = λ2Aeλx as in previous examples).

λ2Aeλx − iAeλx = 0,

   or λ2 − i = 0,

      so .il = ±
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8.4. COMPLEX INHOMOGENEOUS TERM

Examples of the type shown in Section 8.3 do not commonly 
occur in physical sciences, and so we will not take this any further. 
However, the following type of differential equation is very com-
mon–that is, a differential equation with real coefficients and a com-
plex inhomogeneous term. Let us look at some examples of how to 
solve these types of equation.

Recall that the square root of i is another complex number, and 
was found in Example 7.7:

1
;

2
i

i
+

= ±

    
( ) ( )1 / 2 1 / 2so .i x i x

GSz Ae Be+ − += +

Here the constants A and B are complex. This is as far as we need 
to go since we do not require that z be real, so we are not required 
to write this in terms of real functions. The complex constants A 
and B would be fixed by the boundary conditions in an application.

Exercise 8.9 Find the general solution of z″ + iz′ + 2z = 0.

Example 8.12 Find a particular integral of 23 itz z e=+ .

Since the right hand side of this second order, inhomogeneous 
complex equation contains an exponential we will try a 
particular integral solution of a similar form zPI = Ae2it (see 
Section 6.9). It then follows that

z  = 2iAe2it, 
( )2 22 ,itz i Ae=
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where the coefficient A is to be determined. We substitute 
these results into the differential equation to obtain

(2i)2Ae2it + Ae2it = 3e2it.

Next we divide through by e2it and replace i2 by −1.

−4A + A = 3, 

    hence −3A = 3, and A = −1.

Finally we can write the PI as

zPI = −e2it.

Example 8.13 Find a particular integral of z″ + 2z′ + 3z = 6e3ix.

Again, the right hand side of this second order, inhomogeneous 
complex equation contains an exponential. We will therefore 
try a particular integral solution of a similar form for zPI = Ae3ix.

z′ = 3iAe3ix and  z″ = (3i)2Ae3ix.

To determine the coefficient, A, we substitute into the 
differential equation,

(3i)2Ae3ix + 6iAe3ix + 3Ae3ix = 6e3ix.

Next we divide through by e3ix and replace i2 by −1.

−9A + 6iA + 3A = 6, 

      −6A + 6iA = 6,

     hence 6 1
hence .

6 6 1
A

i i
= =
− + − +

Before we write down the solution for the PI, we can tidy up 
A by multiplying through by the complex conjugate of the 
denominator top and bottom (see Section 7.2)

( )
( )( )

( )1 1
, or 1 .

1 1 2
i

A A i
i i

− −
= = − +

− − − +

Finally we can write the PI as

( ) 31
1 .

2
ix

PIz i e= − +
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Now let us consider an example where we are being asked to 
find not just a particular integral, but the general solution.

Exercise 8.10 Find a PI of 2 3 2 itz z z e+ - =  .

Example 8.14 Find the general solution of 32 3 6 itz z z e+ + =  .

This equation is a second order, linear, inhomogeneous 
equation with constant coefficients. Therefore we know that the 
general solution will be a combination of the complementary 
function, CF, and a particular integral, PI. First, let us solve the 
homogeneous equation for the CF. The homogeneous part is

 2 3 0z z z+ + = 

We will try zCF = Aeλt hence t
CFz Aell= , and 2 t

CFz Aell= . 
We substitute into the differential equations and divide through 
by Aeλt to obtain the auxiliary equation

2 2 3 0,

2 4 12
,

2
8 4 2

1 1 1 2.
2 2

i i

l l

l

+ + =

− ± −
=

−
= − ± = − ± = − ±

Then,
( ) ( )

( )
1 2 1 2

2 2

,

.

i t i t

CF

t i t i t
CF

z Ae Be

z e Ae Be

− + − −

− −

= +

= +

The general solution is

zGS = zCF + zPI.

We found zPI in example 8.13 above, so

( ) ( )2 2 31
1 .

2
t i t i t it

GSz e Ae Be i e− −= + − +
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Note that since the differential equation is complex, so is the 
solution (thus A and B are two arbitrary complex numbers).

Exercise 8.11 Find the general solution of z″ + 2z′ − 3z = 20eix.

We now come to one of the most useful applications of com-
plex numbers to solving differential equations. This is where we use 
our knowledge of complex numbers to solve real equations with real 
coefficients and a harmonic driving term on the right hand side, i.e. 
equations of the form

 ( ) ( )cos sin .y ay by c t d tw w+ + = +   (8.5)

Example 8.15 Find a PI for y″ + 2y′ + 3y = 6 cos(3x). 

Compare this with the complex equation that we solved in 
Examples 8.13 and 8.14:

z″ + 2z′ + 3z = 6e3ix

If we use Euler’s equation, eiq = cos q + i sin q, we can rewrite 
the inhomogeneous term (i.e. the RHS) as

z″ + 2z′ + 3z = 6 cos(3x) + 6i sin(3x).

Now we can see that the equation that we have been asked to 
find a PI for (in y) is just the real part of the complex equation 
above (in z).

So the solution to the equation, y″ + 2y′ + 3y = 6 cos(3x), is 
just the real part of the solution to z″ + 2z′ + 3z = 6 cos(3x) + 6i 
sin(3x).

Similarly, a PI solution for the real equation in y is just the real 
part of the PI solution for the complex equation in z, found in 
Example 8.13:

( ){ }31
Re 1 ,

2
ix

PIy i e= - +

or, using ( ) ( )cos sinie iq q q= + , we have
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Similarly, if we wanted to solve the equation in Example 8.15 
with 6 sin(3x) instead of 6 cos(3x) as the inhomogeneous term, we 
should take the imaginary part of a PI to the complex equation  
z″ + 2z′ + 3z = 6 cos(3x) + 6i sin(3x). Let us look at another example.

( ) ( ) ( )( ){ }
( ) ( ) ( ) ( )( ){ }2

1
Re 1 cos 3 sin 3 ,

2
1

Re cos 3 sin 3 cos 3 sin 3 .
2

PIy i x i x

x i x i x i x

= - + +

= - + + +

But i2 = −1, so

 
( ) ( )1 1

cos 3 sin 3 .
2 2PIy x x=- +

This solution can be checked by substituting back into the 
equation that we have been asked to solve.

Example 8.16 Find the general solution of

y″ + 8y′ + 20y = 8 cos(4x)

To find the general solution we need to find the CF and a PI 
for this equation, and add them together. We have previously 
found the CF for this equation in Example 8.9, so we can use 
that directly here:

yCF = e− 4x(a cos(2x) + b sin(2x)).

Next we need to find a PI. To do this we are going to first of all 
write down a complex equation whose PI has a real part which 
is equal to 8cos(4x). We do this because it will be quicker to 
solve the complex equation and take the real part than it is to 
solve for the PI in real form (i.e. in terms of cos and sin). We 
write the following complex equation:
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z″ + 8z′ + 20z = 8e4ix.

Now we try a PI of the form zPI = Ae4ix.

z = Ae4ix,
           z′ = 4iAe4ix, and z″ = −16Ae4ix.

We substitute this into the complex differential equation, and 
divide through by e4ix.

 −16A + 32iA + 20A = 8,

  ( )
2

=
1 8 .

A
i+

Then, multiplying the top and bottom by the complex conjugate 
of the denominator, (1 − 8i), we have

  ( )2
1 8 .

65
A i= -

Hence ( ) 42
1 8 .

65
ix

PIz i e= -

To find the real PI we take the real part of the complex PI,  
yPI = Re(zPI):

  
( ){ }42

Re 1 8 ,
65

ix
PIy i e= -

      hence ({ } ( ) ( )( )}

( ) ( )( )

( ) ( )( )

2

2
hence Re 1 8 cos 4 sin 4

65
2

cos 4 8 sin 4
65
2

cos 4 8 sin 4 ,
65

PIy i x i x

x i x

x x

= - +

= -

= +

hence ( ) ( )2 16
hence cos 4 sin 4 .

65 65PIy x x= +
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Note that the solution contains both cos(4x) and sin(4x) terms 
even though the inhomogeneous term in the differential equation 
only has cos(4x). Physically this means that the response of the sys-
tem is out of phase with the driving force, 8 cos(4x). As discussed 
above we could find a PI by guessing yPI = c cos(4x) + d sin(4x), with 
c and d to be found, but this is usually much more long-winded and 
the chances of making an error are higher.

Finally we can write the general solution as the sum of the CF 
and PI:

( ) ( )( ) ( ) ( )4 2 16
cos 2 sin 2 cos 4 sin 4 .

65 65

GS

x

y CF PI

e a x b x x x-

= +

= + + +

Exercise 8.12 Use the method above to find a PI for each of the 
following equations:

(i) y″ + 2y′ + 9y = 2cos(3x);

(ii) y″ + 7y′ + 12y = −150 sin(3x).

Exercise 8.13 A series LCR circuit driven with voltage  
V = V0 cos(wt) satisfies the differential equation

( )
2

02 / cos
d q dq

L R q C V t
dt dt

w+ + =

where L, R and C are positive constants with (R2 − 4L/C) < 0.  
If the steady state response (i.e. the PI) is q(t) = q0 cos(wt − d) 
show that

( )
0

0 2 21 /

V
q

C L Rw w w
=

- +

and the phase difference d is given by

1tan .
1 /

R
C Lw w

d - æ ö÷ç= ÷ç ÷çè ø-
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8.5. BOUNDARY (OR INITIAL) CONDITIONS

The following example puts together all we have learned in this 
chapter. We can now use our knowledge of complex numbers to 
solve complex differential equations, and we can apply boundary or 
initial conditions to those solutions in exactly the same way that we 
did at the start of the chapter.

Show that the steady state current dq/dt has its maximum 
amplitude when w2 = 1/LC. (This value of w is called the resonant 
frequency of the circuit.)

Exercise 8.14 Find the general solution (CF + PI) of 

y″ + 2y′ + 10y = 13 cos(2x).

Example 8.17 Find the solution of ÿ+ 2 y  + 3y = 6 cos(3t) 
subject to y(0) = 0, y (0) = 1.

We will begin by finding the general solution. First we find the 
CF, by guessing yCF = Aeλt, and hence we can form the auxiliary 
equation and solve for λ,

( )

2 2 3 0,

2 4 12
,

2
hence 1 2i

l l

l

l

+ + =

− ± −
=

= − ±

So a = −1, 2b = . Having solved the auxiliary equation we 
can write down yCF directly in real form as

( ) ( )( )cos 2 sin 2 .t
CFy e a t b t-= +

We can use the result of example 8.15,

( ) ( )1 1
cos 3 sin 3 .

2 2PIy t t=- +



290 • Mathematical Physics

We add the CF and the PI to form the general solution

( ) ( )( ) ( ) ( )1 1
cos 2 sin 2 cos 3 sin 3 .

2 2
t

GSy e a t b t t t-= + - +

Then, differentiating, we can also find y GS,

( ) ( )( )cos 2 sin 2t
GSy e a t b t-=- +

( ) ( )( )2 sin 2 2 cos 2te a t b t-+ - +

 
( ) ( )3 3

sin 3 cos 3 .
2 2

t t+ +

Now we impose the initial conditions. At t = 0,

( ) ( ) ( )( ) ( ) ( )0 1 1 1
0 cos 0 sin 0 cos 0 sin 0 0.

2 2 2GSy e a b a= + − + = − =

And so a = 1/2. We also have y GS (0) = 1, so

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

0 00 cos 0 sin 0 2 sin 0 2 cos 0

3 3
sin 0 cos 0 1,

2 2
3

2 1.
2

GSy e a b e a b

a b

= − + + − +

+ + =

⇒ − + + =



And using a = 1/2 we find b = 0. Therefore, the solution is

( ) ( ) ( )1 1 1
cos 2 cos 3 sin 3 .

2 2 2
ty e t t t−= − +

Exercise 8.15 Find the solution of y″ + 2y′ + 10y = 13 cos(2x) 
subject to the initial conditions y(0) = 0, y′(0) = 2.
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8.6. SYSTEMS OF FIRST ORDER EQUATIONS

Just as we can have simultaneous linear equations, we can have 
simultaneous differential equations. The simplest case is a set of 
homogeneous first order linear equations with constant coefficients. 
The following example looks at two such equations and illustrates 
how these can sometimes be solved. (The example can also be solved 
more simply using addition and subtraction to derive two indepen-
dent equations, but we use it here to illustrate the more general 
method.)

Example 8.18 Find the general solution of the system for u(t), 
v(t):

0,
0.

u v

v u

+ =
− =




The system is linear with constant coefficients so we guess 
exponential forms for both u and v with A ≠ 0, B ≠ 0.

Try and ,
then and .

t t

t t

u Ae v Be

u Ae v Be

= =
= = 

l l

l ll l

Substitute and divide through by eλt. This is possible since we 
have chosen u and v to have the same exponential dependence.

   λA + B = 0, 

and λB − A = 0.

Eliminate A and B to get the auxiliary equation for λ, and solve 
for λ.

    B = A/λ, 

λ2A + A = 0.

Since A ≠ 0

λ2 + 1 = 0,

  so λ = ±i.
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Notice how this works: we add together the possible solutions 
for one function (u here), choosing the constants to make the solu-
tion real, and the general solution for the other function (v  here) 
then follows.

The general solution is a sum of the two possible solutions with 
arbitrary coefficients.

uGS = Ceit +De– it.

C and D are arbitrary complex constants. The general solution 
can be rewritten in explicitly real form, with a = 0 and b = 1 
(see Example 8.8)

uGS = a cos(t) + b sin(t).

a and b are arbitrary real constants. The easiest way to obtain v 
is to return to the original system

( ) ( )
,

sin cos .
GS

GS

v u

v a t b t

= −

= −



Exercise 8.16 Find the general solution of the following system 
of first order equations.

0,
4 6 0.

u v u

v v u

− − =
+ + =




What is the solution satisfying u(0) = 1, v(0) = 0?

8.7. COMPLEX IMPEDANCE

We have seen that a PI of a linear differential equation with 
constant coefficients subject to a harmonic forcing term (the right 
hand side) is a harmonic at the same frequency as the forcing term 
but a different amplitude and phase. Since the equation is lin-
ear the amplitude of the force and the response must be linearly 
related. We represent the driving term as the real part of a com-
plex exponential and we write the constant of proportionality as Z, 
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called the impedance of the system. For a resistive mechanical sys-
tem the impedance relates the amplitude of the steady state veloc-
ity v to the amplitude of the applied harmonic force by v = F/Z; 
for electrical circuits the impedance relates the current and the 
applied voltage: I = V/Z. Note that this gives only the steady state 
behavior and only for a harmonic driving term. Note also that to 
get the physically measured real quantities we take the real parts: 
for example, the applied voltage is Re{V eiwt} and the response is 
Re{(V/Z)eiwt}. The impedance Z is constant in time but a function 
of the frequency w (and the parameters of the system). Once we 
know the impedance Z, solving for the steady state of a resistive 
system subject to a harmonic force becomes an exercise in complex 
algebra.

Exercise 8.17 The complex impedance Z of a circuit (an inductor, 
capacitor and resistor in series) is given as

1
,Z R i L

i C
w

w
= + +

where R, C, and L are real positive constants. Show that Z can be 
written in the form

2
2 1

,iZ R L e
C

dw
w

 = + − 
 

where

1

1

tan .
L

C
R

w
w−

 − 
=  

 
 

d

Hence show that an applied voltage Re(V0eiwt), with V0 real, gives 
rise to a current

( )0

2

2

cos .
1

V
I t

R L
C

w

w
w

= −
 

+ − 
 

d
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8.8. SOME EXAMPLES FROM PHYSICS

We have studied numerous examples of solutions of equations 
for some abstract functions y(x) or y(t). In real physical problems 
the variables represent physical quantities and the notation will 
reflect this. The major difference between the problems studied so 
far and the examples in the following set is just the notation. The 
procedures are the same as those you have applied in this chapter 
and in Chapter 6.

Exercise 8.18 By seeking a solution of the form x = constant × emt  
(and not otherwise), find the general solutions of the equation

0, 0x rx x r+ + = >  l

(where /x dx dt= ) in the cases

(i) λ = r2

(ii) λ = r2/4

(iii) λ = −r2.

Exercise 8.19 By seeking a solution of the form y = constant × emx  

(for suitable m), find a particular integral of

y″ + 2y′ + 4y = 3 cos(wx)

and hence find the general solution. At what driving frequency, w, 
is the amplitude of the forced oscillation, yPI, a maximum? (The 
amplitude of an oscillation a cos(λx) + b sin(λx), where a, b and λ 
are real constants, is (a2 + b2)1/2. Equivalently, the amplitude of an 
oscillation Re(Aeiλx) is |A|.)

Exercise 8.20 The equation

dI
I j

ds
k+ =
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determines the specific intensity I(s) of radiation propagating in 
a medium. (The positive functions k(s) and j(s) characterize the 
absorption and emission properties of the medium and s mea-
sures distance along the ray path.) Find the solution I(s) satisfying 
I(0) = 0 in the cases that (i) j, k are constants, (ii) j = as, k = bs, 
with a, b constants. Show that in both cases I(s) can never exceed 
j(s)/k(s) for s > 0.

Exercise 8.21 The angular velocity W of a rapidly rotating shaft 
can be shown to obey an equation of the form

3 2

3 2 2 10
d d
dt dt

− + =
W W

W

under certain conditions (t is time).

1. Find a particular integral of this equation, and hence  
the general solution. (Hint: m3 − m2 + 2 = (m + 1) 
(m2 − 2m + 2).)

2. Show that, except for certain special initial conditions, the 
angular velocity will vary periodically, with an amplitude 
increasing with time. (This type of unstable motion is called 
“hunting.”)

Exercise 8.22 A “critically damped” oscillator obeys the equation
2 2

2 0,
4

d y dy r
r y

dt dt
+ + =

where y is the displacement, t is the time and r is a non-zero 
constant. Find the solution obeying the initial conditions y = 0 at 
t = 0 and dy/dt = v > 0 at t = 0. Show that the displacement is a 
maximum at a time tmax which is independent of v and show that 
the maximum displacement is ymax = 2v/re where e is the base of 
natural logarithms.
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8.9. EXTENSION: GREEN FUNCTIONS

So far we have used guesswork to obtain a particular integral of a 
differential equation. In fact, if we know two independent solutions 
of a homogeneous equation, then we can construct a formula for a 
particular integral. In this section, we will outline how this is done, 
leaving the details to more advanced texts.

Suppose we seek a PI of the equation y″ + y = f(x) where f(x) is 
given. We know that cos(x) and sin(x) are two linearly independent 
solutions of the homogeneous equation. (By linearly independent 
we mean that there are no constants a and b such that a cos(x) +  
b sin(x) = 0.) We construct the function

( ) ( ) ( ) ( ) ( )( ) ( )cos sin sin cos /
,

0

x x x x W x x x
G x x

x' x

′ ′ ′ ′ − ≤′ = 
>

where W(x) = sin(x)(cos(x))′ − (sin(x))′cos(x) = −1. We now assert 
that a particular integral of y″ + y = f(x) is

( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )
0

,

cos sin sin cos /

PI

x

x

y x G x x f x dx

x x x x W x f x dx

′ ′ ′=

′ ′ ′ ′ ′ = − 

∫
∫

with x0 < x an arbitrary constant. It is an exercise in differentiating 
an integral with respect to a parameter (x here) to verify this result 
(see section 10.8). Different choices of the lower limit x0 and different 
linear combinations of cos(x) and sin(x) as the independent solutions 
correspond to different PIs satisfying different boundary conditions.

The function G(x, x′) is called a Green’s function (sometimes a 
Green function). If we think of the differential equation as a differen-
tial operator on y giving us f, then the Green’s function is the inverse 
integral operator on f giving us back y.



Differential Equations 2  •  297

In general, if we have two independent solutions u(x) and v(x) 
of the equation y″ + a(x)y′ + b(x)y = 0, then a PI of the equation  
y″ + a(x)y′ + b(x)y = f(x) is

( ) ( ) ( )
0

,
x

x
y x G x x f x dx′ ′ ′= ∫

Where

( ) ( ) ( ) ( ) ( )( ) ( ( )/
,

0

u x v x u x v x W x x x
G x x

x' x

′ ′ ′ ′ − ≤′ = 
>

and where W(x) = u′(x)v(x) − u(x)v′(x). This again can be verified 
by back-substitution. In practice, there are only a limited number of 
choices of the coefficients a(x) and b(x) for which we can find explicit 
solutions of the homogeneous equation. Nevertheless, Green func-
tions have found widespread applications in theoretical physics.

Revision Notes

After completing this chapter you should be able to

•	 Apply boundary and initial conditions to the general 
solution of a differential equation

•	 Solve differential equations involving complex roots in the 
auxiliary equation, and write the solution in explicitly real 
terms

•	 Solve differential equations with complex coefficients

•	 Solve differential equations with a complex inhomogeneous 
term, and use this to simplify solving real equations with 
harmonic inhomogeneous terms (i.e. a function of cos  
and/or sin)

•	 Solve a simple system of first order differential equations
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8.10. EXERCISES

1. Solve the differential equation

23 0
dy

x y
dx

− =

 subject to the condition y(0) = 1. 

2. Solve the differential equation

2 23 0
dy

x y
dx

+ =

 subject to the condition y(0) = 1. 
3. Solve the differential equation

2 0
dy

xy
dx

+ =

 subject to the condition y(0) = 1.

4. Integrate the differential equation ( )2 sec
dy

x y
dx

= .

5. Solve the differential equation

2y dy
e x

dx
=

 by separation of variables for y as a function of x.

6.  Find the solution of 
2

1y y
x

′ + =  that approaches a finite 
value as x → 0.

7. Solve the equation

3

2 1dy
y

dx x x
+ =

 subject to the condition y(1) = 0.

8. Solve the differential equation

1
dy y
dx x

+ =

 subject to the condition y(1) = 1. 
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9. Solve the differential equation
2

2 2 3 0
d y dy

y
dx dx

− − =

 subject to the conditions y → 0 as x → +∞, y(0) = 1. 

10. Solve the differential equation
2

2 2 0
d y dy

y
dx dx

+ − =

 subject to the conditions y → 0 as x →∞, y(0) = 3. 

11. Solve the differential equation
2

2 3 4 0
d y dy

y
dx dx

− − =

 subject to the conditions y → 0 as x → +∞ and y(0) = 3.

12.  By direct substitution show that y = sin(wt + p/6) is a solu-
tion of the differential equation

2
2

2 0.
d y

y
dx

w+ =

 Write down one other independent solution.

13. Find the general solution of y″+ 10y′ + 34y = 0.

14.  Find a particular integral of the equation y″ + 2y′ + 4y = 
sin(3x).

15. Find a particular integral of the differential equation
2

2
2 2 4 4 .

d y dy
y x

dx dx
+ − = −

16. Find a particular integral of the equation
3 2

3 24 3 2 .xd y d y dy
y e

dx dx dx
−+ + + = −

17. Find a particular integral of the equation 
2

2
2

xd y dy
y e

dx dx
+ + = .
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18.  Find a particular integral of the differential equation  
y″+ 7y′ + 4y = 8x2.

19.  Find the general solution of the differential equation  
y″ − y′ + 3y = 0.

20. The general solution of the equation ÿ − 2y  + 5y = 0 is

y = et(A cos(2t) + B sin(2t)).

 What is the solution satisfying y = 0 and y  = 1 at t = 0?

21.  Find the most general solution of the differential equation  
y″ −y′ −2y = 0 such that y(x) → 0 as x → ∞.

8.11. PROBLEMS

1. Find the solution of the differential equation

( )
2

2 3 2 cos
d y dy

y x
dx dx

+ + =

 subject to the conditions y = 11/10, dy/dx = −7/10 at x = 0.
2. Find the solution of the differential equation

2

2 2 5 5
d y dy

y x
dx dx

+ + =

 subject to the conditions y = −2/5 and dy/dx = 0 at x = 0. 
3. Solve the differential equation

2

2 2 0
d y dy

y
dx dx

− − =

 subject to the conditions y → 0 as x → +∞, and y(0) = 1. 
4. Find a particular integral of the equation

2

2 6 13.
d y dy

y
dx dx

− − =

 Hence (or otherwise) find the solution of the equation 
satisfying y(0) = 0 and dy/dx = 0 at x = 0.
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5. The complex function z(t) satisfies the differential equation

 ( ) 22 2 2 1 5 .itz z z t e− + = − 

 Find the general solution of this equation.
 What is the solution which satisfies z(0) = 0 and z (0) = 0?
6. Solve the differential equation

( )
2

2 2 2 5cos 3
d y dy

y x
dx dx

+ + =

 subject to the conditions y = dy/dx = 0 for x = 0. 
7. Solve the differential equation

( )
2

2 2 2 sin 2
d y dy

y x
dx dx

+ + =

 subject to the conditions y(0) = y(π/2) = 0.
8.  Solve the differential equation

( )
2

2 4 8 cos
d y dy

y x
dx dx

− + =

 subject to the conditions y = dy/dx = 0 for x = 0. 
9. Find the general solution of the equation

2

2 12 .td y dy
y e

dt dt
−+ − =

 For what values of the arbitrary constants is the solution 
bounded (i.e. remains finite) as t → +∞? Determine the 
relation that must be satisfied between y(0) and y′(0) in  
order that the solution be bounded as t → +∞. (Such a 
system is physically unstable since for the smallest change 
in the initial conditions y → ±∞.)

10.   Find the solution of y″ − 4y′ + 5y = 65 cos(x) − 5 subject to 
the conditions y(0) = 0, y′(0) = 1.

11.  Find the general solutions of the following differential 
equations:

(i) y′ = (1 − y2)1/2x3 

(ii) y′ + ycot(x) = 2cos(x) 
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(iii) y″ − 4y′ + 3y = 0 

(iv) y″ − 4y′ + 4y = 0.

12. Find the general solutions of the following differential 
equations:

(i) y2y′ − 1 = cos(x) 

(ii) x3y′ + x2y = 1 

(iii) y″ − 3y′ − 4y = 0 

(iv) y″− 6y′ + 9y = 0.

13.  Find the general solutions of the following differential 
equations:

(i) y′ = 3x2y 

(ii) ( )
( )

2
cot

sin
x

x y' y
x

− =

(iii) y″ −10y′ + 25y = 0 

(iv) y″− 7y′ + 12y = 6ex.

14. (i)  Find the general solution of the differential equation

y″ + 6y′ + 13y = 0.

 Express your solution in terms of real functions of the 
variable x.

(ii) The function y satisfies the differential equation

y″ − 5y′ + 4y = 8x − 6.

 Find the general solution of this equation. What is the 
solution which satisfies y(0) = 1 and y′(0) = −1?



CHAPTER 9
MULTIPLE INTEGRALS

In this chapter, we learn how to integrate functions of two or three 
variables over two- or three-dimensional regions with simple shapes. 
As well as the more obvious applications – for example calculating the 
volume of a given body or the rate of energy emission from a given 
surface – there are important but less obvious ones – for example find-
ing the mean speed of stars in a galaxy. By using suitably chosen coor-
dinates such integrals can often be evaluated relatively simply. One 
very important application is to the definition of solid angle. As we 
shall see, the concept of solid angle extends the notion of an angle 
subtended at a point by an arc to two-dimensional extended objects.

9.1. REPEATED INTEGRALS

Given a function f(x, y) of two variables (x, y), we can obtain the 
integral

( ) ( )2

1

, .
y

y
F x f x y dy= ∫

by holding x temporarily constant. Given some limits y1 and y2 the 
result is a function F(x) of just one variable (x). We can then inte-
grate the result with respect to x:

 ( ) ( )( )2 2 2

1 1 1

, .
x x y

x x y
I F x dx f x y dy dx= =∫ ∫ ∫  (9.1)
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We can write this with fewer parentheticals as

 ( )2 2

1 1

,
x y

x y
I f x y dydx= ∫ ∫  (9.2)

with the understanding that equation (9.2) means “do the integrals 
in the order indicated in equation (9.1),” i.e. “from the inside, work-
ing out.” We call this a repeated integral (also an iterated integral or 
a double integral). Note that the order indicated by the bracketing 
in equation (9.1) is one convention. Some authors use an alternative 
convention in which the first integral sign is associated with the first 
differential and so on in sequence.

Example 9.1 Evaluate 
1 1 2

1 0
x y dydx

−∫ ∫ .

The inner integral is 
1 2

0
x y dy∫ . For this inner integral with 

respect to y, x is a constant, thus
12 21 12 2 2

0 0
0

.
2 2
y x

x y dy x y dy x
 

= = = 
 

∫ ∫

So
12 31 1 12

1 0 1
1

1
.

2 6 3
x x

x y dydx dx
− −

−

 
= = = 

 
∫ ∫ ∫

Example 9.2 Evaluate 
1

0

xy

a
xe dydx

∞ −∫ ∫  (where a > 0 is a given 
constant).

The inner integral is xy

a
xe dy

∞ −∫ . Here x is treated as a constant 
parameter for the integration with respect to y:

.
yxy

xy xy ax

a a
y a

e
xe dy x e dy x e

x

=∞−∞ ∞− − −

=

 
= = − = 

 
∫ ∫
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So

( )
1

1 1

0 0
0

1
1 .

xax
xy ax a

a
x

e
xe dydx e dx e

a a

=−∞ − − −

=

 
= = − = − − 

 
∫ ∫ ∫

Exercise 9.1 Evaluate 
2 1 3

0 0
xy dydx∫ ∫ .

The extension to more than two integrals is straightforward, as 
in the following example.

Example 9.3 Evaluate ( )
1 /2 2 2

0 0 0
sinzx y dzdydx∫ ∫ ∫

p
.

The innermost integral is

( ) ( )
( )

2 22 2

0 0

2

sin sin

2 sin .

zx y dz x y z dz

x y

=

=

∫ ∫

So now

( ) ( )

( )

/2 2 /22 2

0 0 0

/22

0
2

sin 2 sin

2 sin

2 .

zx y dzdy x y dy

x y dy

x

=

=

=

∫ ∫ ∫
∫

p p

p

And finally

( )
1 /2 2 12 2

0 0 0 0

2
sin 2 .

3
zx y dzdydx x dx= =∫ ∫ ∫ ∫

p

Exercise 9.2 Find ( )
1 /2 1

0 0 0
sinxy zy dzdydx∫ ∫ ∫

p
.

If, as in all these examples, the limits of integration are constants, 
then (for the integrands that are likely to arise in practice in physical 
sciences) the integrals can be evaluated in any order.
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This is obvious for cases like Example 9.1 because the double 
integral is a product of single integrals:

( ) ( )
( )( )

1 1 1 12 2

1 0 1 0

1 12

1 0

product
of single .
integrals

x ydy dx x ydy dx

x dx y dy

− −

−

=

=

 
 =  
 
 

∫ ∫ ∫ ∫

∫ ∫

which, reversing the sequence of steps,

( )( )
( )

( )

1 1 2

0 1

1 1 2

0 1

1 1 2

0 1
.

y dy x dx

y x dx dy

yx dx dy

−

−

−

=

=

=

∫ ∫

∫ ∫

∫ ∫

In fact, it is generally true that when the integrand can be fac-
tored into the product of two functions, f(x,y) = g(x)h(y), then the 
repeated integral over x and y can be factored into the product of 
two single integrals

( ) ( ) ( )

( )( ) ( )( )
1 1 1 1

0 0 0 0

1 1

0 0

,

.

y x y x

y x y x

x y

x y

f x y dxdy g x h y dxdy

g x dx h y dy

=

=

∫ ∫ ∫ ∫

∫ ∫

We may also change the order of integration in cases, such as 
Example 9.2, where the double integral is not equal to a product 
of single integrals. (In these cases one choice of order may result 
in an easier calculation than another, but the final result will be the 
same.)

But if the limits of integration are not constants (e.g. if a in 
Example 9.2 were a function of x), then the order cannot simply be 
reversed. This is dealt with in Section 9.3.
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9.2. INTEGRALS OVER RECTANGLES IN THE PLANE

The area under the graph of a function y = f(x) is given by the 
definite integral of f. We therefore expect that the volume under a 
surface, z = f(x,y), is the double integral of f(x,y). To demonstrate 
this we shall adapt the proof from one dimension to two.

First, consider a curve in the 
plane. The area Ak of the rect-
angle (shaded) of width dx at xk

Ak ≈ height of curve × base

≈ f(xk)dx

while we have that the area 
under the curve between a and 
b is

( ) .k
k

A f x x≈ ∑ d

In the limit dx → 0, k → ∞ we get the exact result:

( )
Area under the curve

in the interval .
between  and 

b

a
f x dx

a b

 
  = 
 
 

∫

Exercise 9.3 Evaluate the integral

( )1

0
,xy

a
xe dx dy

∞ −∫ ∫
and check that the result is the same as obtained by integrating in 
the reverse order in Example 9.2. (Hint: the inner integral can be 
evaluated by integration by parts; also

2 .
y y ye e e

dy
y y y

− − − 
+ = − 

 
∫

y

x

y = f (x)

δx

xk

y = f (xk)

a b
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Now, for the analogous vol-
ume under a surface. Looking at 
the figure we have the volume 
Vk of the box above the point  
(xk ,yk) with base dx × dy:

Vk ≈ height of surface × area 
of base

≈ f(xk, yk) dxdy

Meanwhile, the volume under 
the surface is

                                             
( ), .k k

k

V f x y x y≈ ∑ d d

In the limit dx, dy → 0, k → ∞ we get the exact result

( )( )2 2

1 1

1 2 1 2

Volume under the surface
above the plane rectangle , .

,

y x

y x
f x y dx dy

x x x y y y

 
  = 
 ≤ ≤ ≤ ≤ 

∫ ∫

This volume is also referred to as the “integral of the function  
f(x, y) over an area,” the “area” being in this case the region of the 
plane rectangle. Such integrals often arise in physical science as 
“integrals of functions over plane regions.” Note that the inner inte-
gration is over a slab of width dy at some general value of y and then 
the outer integral adds all the slabs together.

As in the next example, the result of a repeated integration 
is not necessarily a physical volume (with units of m3), just as 
the result of a single integration is not necessarily a physical 
area (with units of m2). When we talk about the “volume” of a 
double integral, we mean the volume under the surface in the 
graph of f(x, y). If f(x, y) and x and y all have units of length, 
then the double integral does indeed give a physical volume. But 
if f(x, y) is a charge density over a surface then its integral with 
respect to its two spatial dimensions (x, y) will be a charge, not a  
volume.

y

x

z
z = f (x, y)

δx
δy

(xk, yk)
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Example 9.4 A square plate with sides of unit length has a 
surface mass density

s(x, y) = 1 + cos(px) cos(py),

where x and y are measured from the center of the plate 
parallel to its sides. Find the mass M of the plate.

The mass of an element dxdy of surface is the mass per unit 
area (i.e. the surface density) × area, hence sdxdy. The mass 
M of the plate is the integral of this, i.e. of the density per unit 
area over the region of the plate, thus:

( )
1/2 1/2

1/2 1/2
, .M x y dx dy

− −
= ∫ ∫ s

Notice the limits of each integration. We are told in the 
question that the plate is square, has sides of length 1, and x 
and y are measured from the center. So x runs from −1/2 to 
+1/2, and so does y.

Evaluate the inner integral:

( ) ( )( ) ( ) ( )

( )

1 2
1 2

1 2
1 2

1
1 cos cos sin cos

2
1 cos .

x y dx x x y

y

p p p p
p

p
p

−

 + = +  

= +

∫

Now evaluate the outer integral:

( )

( )

1/2

1/2

1/2

2
1/2

2

2
1 cos

2
sin

4
1 .

M y dy

y y
−

 = +  

 = +  

= +

∫ p
p

p
p

p
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9.3.  MULTIPLE INTEGRALS OVER IRREGULAR 
REGIONS

In all the examples above, we were given the coordinates with 
which to integrate (dx, dy) and the region we integrated over was 
rectangular in these coordinates, defined by lines of constant x and y.  
Suppose we have some function f(x, y) and we wish to integrate over 
some non-rectangular region – for example to calculate the charge 
on a disc if f(x, y) is the surface density of the charge. To integrate a 
function over an irregular region in the plane we divide the region 
into tiny area elements, each of area dAk (each given a number, k). 
Then we sum dIk = f(xk, yk)dAk over all the area elements that fall 
entirely within the region.

 ( )
in in

,k k k k
k R k R

I I f x y Ad d= =∑ ∑  (9.3)

In the limit of dA → 0 and k → ∞ we get the double integral over 
the region

 ( ),
R

I f x y dA= ∫∫  (9.4)

This is subtly different from the repeated integrals we exam-
ined previously. Here we evaluate over area elements dA – we did 
not specify which coordinates to use to integrate over. In practice, 
double or multiple integrals can be evaluated as repeated integrals. 

Exercise 9.4 The electromagnetic radiation emitted between fre-
quencies ν and ν + dν from the annular region of a disc between 
radii r and r + dr has a power

Cr−a exp(−bνr1/4)dνdr

where C, a and b are positive constants and a > 3/4. If the inner 
radius of the disc is r0 and the outer radius is taken to be infi-
nite, write down and evaluate the double integral giving the total 
power radiated by the disc over all (positive) frequencies.
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(This result is known as Fubini’s theorem and holds for almost all 
integrals you are likely to encounter.) So we choose coordinates that 
make the integrand or the region simple to deal with, and evaluate 
the repeated integral.

Left: A bounded, irregular 
region in the (x, y) plane, par-
titioned into rectangular cells. 
In order to define the double  
integral of a function f(x, y) 
over a non-rectangular region 
R, we imagine the region parti-
tioned into rectangular cells of 
area dA = dx × dy. And for each 
cell (numbered k) we compute  
the volume over that cell,  

Vk = f (xk, yk)dx dy, just as in the case of the rectangular region. We 
then sum these small volumes over only those cells that fall entirely 
within the region R:

( )
in

, .k k
k R

V f x y x y≈ ∑ d d

As before, as the grid becomes finer (dx, dy → 0) the difference 
between the grid and the integration region tends to zero and we have

 ( ) ( ), , .
R R

I f x y dA f x y dx dy= =∫∫ ∫∫  (9.5)

So we can write the double integral over an area as a repeated 
integral over x and y. But we must be careful with the limits as the  
following example shows.

y

x

R

δx

δy

(xk, yk)

Example 9.5 Evaluate 2I x y dydx
∆

= ∫∫  where D is the triangle 
(Figure 9.1) bounded by the lines x = 1, y = 0, y = 2x.

We begin by putting in the limits of integration. In the inner 
integral with respect to y, x has a general value somewhere 
in D. Draw the dotted line (Figure 9.1) parallel to the y-axis 
at some general value of x in D. From this we see that, within  
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D, y runs from 0 to 2x. These are the limits for the inner (y) 
integral. Thus, the inner integral is

22
2 22 2 2 4

0 0
0

2 .
2

y x
x x

y

y
x y dy x y dy x x

=

=

 
= = = 

 
∫ ∫

Now, to cover D we must let x range between 0 and 1. These 
are the required limits for the outer integral, thus

( )
151 2 12 4

0 0 0
0

2
2 2 .

5 5

x x
I x y dy dx x dx

 
= = = = 

 
∫ ∫ ∫

Exercise 9.5 Evaluate 2I x y dydx
∆

= ∫∫  where D is the triangular 

region in Figure 9.2(a), bounded by the lines x = 0, y = 0, y = 1 − x.

Exercise 9.6 Evaluate 2

D
I x y dydx= ∫∫  over the quarter of the 

unit disc in Figure 9.2(b).

Note that in these examples we have drawn the diagram for you. 
In general you will have to begin by sketching your own figure (see 
Exercise 9.7).

1

1

2

0
0

y

x

y = 2x x = 1 

y = 0 

(a)

0

1

1

2

0

1

2

z

y = 2x

x

y

(b)

FIGURE 9.1: (a) The region bounded by y = 2x, x = 1 and y = 0. (b) The function z = x2y with 
the triangular region indicated on the (x, y) plane.
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1

1

0
0

y

x

y = 1–x  

x = 0
x = 0

y = 0 y = 0 

(a)

1

1
0

0

x2+ y2 = 1

y

x

(b)

FIGURE 9.2: (a) The region for Exercise 9.5 bounded by y = 1 − x, x = 0 and y = 0. (b) The 
region for Exercise 9.6 bounded by x2 + y2 = 1, x = 0 and y = 0.

9.4. CHANGE OF ORDER OF INTEGRATION

As stated, for most functions order of integration does not mat-
ter if the limits of integration are simple constants, e.g. integrating 
over a rectangular region (with x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2). When 
the limits of the integrals are themselves functions, we can still 
change the order of integration if we are careful with the limits, as in  
Example 9.6. (There are some cases, with functions that are not of 
constant sign or involving infinities or discontinuities, where we can-
not change the order of integration. But these are seldom encoun-
tered in undergraduate physics.)

Example 9.6 Evaluate 2I x y dxdy
∆

= ∫∫  where D is the region 
outlined in the figure (below). This is the same as in example 9.5  
but with the order of the integrations reversed.

For the inner integration with respect to x, y has a general 
value in D. Draw the dotted line at a general y within D 
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The function to be integrated and the region of integration are 
the same as in the example of Section 9.3, so the answer is, of course, 
the same. But note that you have to work out the limits (e.g. from a 
diagram) each time. This requires thought and care.

Sometimes integrals that arise in one order are best evaluated in 
another. The following is an artificial example.

Example 9.7 Evaluate ( )
( )( )1

1 /2

0 sin
cosec

y
x dx dy

−∫ ∫
p

 by 

changing the order of integration (assuming that sin–1(y) is in 

the range 0 to π/2).

parallel to the x-axis. We see 
that, within D, x runs from  
x = y/2 to x = 1. For the outer 
integral the range y = 0 to y = 2 
covers the triangle so these are 
the limits for the y integration.

( )2 1 2

0 /2

13 3
2 2

0 0
/2

1
3 3 8

y

x

x y

I x y dx dy

x y y
y dy dy

=

=

=

   
= = −  

   

∫ ∫

∫ ∫

22 5

0

1 1 4 32
3 2 8 5 3 2 8 5

1 4 2
2 .

3 5 5

y y   = − = −    × × 

 = − =  

1

1

2

0
0

y

x

x = y/2 x = 1

y = 0
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First we draw a sketch. The 
inner integral is an integral 
with respect to x, where 
the limits are x = sin–1(y) to  
x = p/2. So we plot y = sin(x) and 
examine the horizontal extent 
of the region between this 
curve and x = p/2. Looking at 
the outer integral tells us that y 
ranges between y = 0 and y = 1.  
This gives us the shaded area in 
the figure.

Now we can safely change the order of integration. Now the 
inner integration is with respect to y. For a general value  
of x (draw a vertical line at some x), y ranges between  
0 and sin(x). So these are now the limits for the inner y 
integral.

Within the shaded region x ranges over 0 to p/2, so  
these are the limits for the outer x integral, so we now have 
that

( )
( )

( )
( )( )
( )

( )( )
( ) ( )

( ) ( )

1

1 /2 /2 sin

0 sin 0 0

/2 sin

0 0

/2 sin

00

/2

0

/2

0

cosec cosec

cosec

cosec

cosec sin

.
2

x

y

x

x

x dx dy x dy dx

x dy dx

x y dx

x x dx

dx

−

  = 

=

=   

=

= =

∫ ∫ ∫ ∫

∫ ∫

∫
∫

∫

p p

p

p

p

p p

1

0
0 π/2 π

y

x

x1

y1 = sin (x1)

x1 = sin–1 (y1)
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0
0

y

x

r

P(x, y) 

(a)

y

x

r

dq

dr

rdq
dA

(b)

q

FIGURE 9.3: (a) Polar coordinates (r, q) and Cartesian coordinates (x, y). (b) The area ele-
ment in terms of polar coordinates: dA = rdrdq .

9.5. POLAR COORDINATES IN TWO DIMENSIONS

Instead of the Cartesian labels (x, y) for points in the plane, we 
can use a distance r from the origin and an angle q (from the x-axis) 
as in Figure 9.3(a). From the figure we deduce the relation between 
the (x, y) and (r, q) labels of the point P:

x = r cos(q),

        y = r sin(q). (9.6)

The inverse relations are

  r = (x2 + y2)1/2,

           q = tan–1(y/x).  (9.7)

Exercise 9.7 Sketch the regions of integration and insert the cor-
rect limits on the right hand sides of the following equalities:

 (i) ( )( ) ( )( )1

0 0
, ,

y
f x y dx dy f x y dy dx=∫ ∫ ∫ ∫ ,

(ii) ( ) ( )( )0
, ,

y
f x y dx dy f x y dy dx

∞ ∞  = ∫ ∫ ∫ ∫ .
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Functions in the plane may take on a simpler form in polar 
coordinates.

Example 9.8 What is the function f(x, y) = (x2 + y2)3/2 in polar 
coordinates?

We substitute x = r cos(q), y = r sin(q) in f(x, y) to get 

f(r, q) = (r2 cos2(q) + r2 sin2(q))3/2 = r3

Exercise 9.8 What is the function ( )
1/22

2, 1
y

f x y x
x

−
 

= + 
 

 in 
polar coordinates (r, q)?

Exercise 9.9 What are the curves

 (i) r = constant

(ii) q = constant?

9.6. INTEGRALS OVER REGIONS IN THE PLANE

In polar coordinates the element of area is dA = dr × rdq (see 
Figure 9.3b). We can use this to integrate a function over a plane 
region. Instead of

( ),f dA f x y dxdy=∫ ∫∫
we can write

( ), .f dA f r rdrdq q=∫ ∫∫
This is useful if the limits of integration are more readily 

expressed in (r, q) coordinates. The temptation to write drdq (instead 
of rdrdq) must be resisted; dxdy is an area, but drdq is not – they 
cannot be equal.
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Example 9.9 Find the integral of the function f(x, y) = xy over 
the region x2 + y2 ≤ 1, x ≥ 0, y ≥ 0.

Let

R
I xy dxdy= ∫∫

where R is the given region. Because the area is a quadrant of 
a circular disc, we transform the problem to polar coordinates. 
So, first transform the integrand:

( )
( )( ) ( )( )
( ) ( )2

,

cos sin
cos sin

f x y xy

r r

r

=

=
=

q q
q q

Next transform the element of area: 

dxdy = rdqdr

Finally, we transform the limits: the area of integration is the 
first quadrant for which 0 ≤ r ≤ 1,0 ≤ q ≤ p/2, and so now the 
integrand is a product of a function of r and a function of q with 
constant limits:

( ) ( )

( ) ( )

( )

/ 2 1 2

0 0

/ 2 1 3

0 0

/ 2 1
2 4

0 0

cos sin

sin sin

1 1
sin

2 4
1 1 1

.
2 4 8

I r rd dr

d r dr

r

=

=

   =       

= × =

∫ ∫
∫ ∫

p

p

p

q q q

q q

q

Note how the integral in q is evaluated using d(sin(q)) = cos(q) dq.  
This is equivalent to changing the variable to u = sin(q). It is 
not necessary to change the limits for sin(q) explicitly.
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9.7. AN IMPORTANT DEFINITE INTEGRAL

As a further example of integration over a region in polar coordi-

nates we look at the following trick to evaluate 
2

0

xe dx
∞ −∫ .

Exercise 9.10

 (i)  Find the integral of the function f(x, y) = x2 + y2 over the 
disc x2 + y2 ≤ 4.

(ii)  A disc of radius 2m centered on the origin has a variable 
surface density given by s(r) = 0.1r2 kg m–1. What is the 
mass of the disc?

Example 9.10 Evaluate the integral of the function  
f(x, y) = e−(x2+y2) over the whole plane. In Cartesian coordinates 
this is

( )( )
( )

2 2

2 2

2
2

.

x y

x y

x

I e e dxdy

e dx e dy

e dx

∞ ∞ − −

−∞ −∞

∞ ∞− −

−∞ −∞

∞ −

−∞

=

=

=

∫ ∫

∫ ∫

∫

But there are no elementary methods to evaluate 
2

0

xe dx
∞ −∫ .  

We can, however, transform the problem to polar coordinates. 
The problem becomes: evaluate the integral of the function  
f(r, q) = e− r2 over the whole plane. This is

( )( )
2

2

2

2

0 0

2

0 0

0

1
2

2

r

r

r

I e rdrd

d e rdr

e

q

q

∞ −

∞ −

∞
−

=

=

 = × − =  

∫ ∫

∫ ∫

p

p

p p
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The example is important because (i) this integral appears in 
various branches of physics and mathematics, and (ii) it cannot be 
evaluated by elementary methods (do not waste time trying!).

9.8. CYLINDRICAL POLAR COORDINATES

We can extend two-dimensional polar coordinates to three dimen-
sions by adding the z-coordinate. Thus we label points in space by two 
distances and an angle as in Figure 9.4(a). Note that the usual conven-
tion is to label the radial coordinate r here (in place of r in section 9.5) 
and the angular coordinate φ (in place of q) to avoid confusion with the 
spherical polar coordinates introduced in Section 9.11 below.1

y

z

x

φ

ρ

O

P

(a)

y

z

x

dφ
dρ

dz dV

ρdφ

(b)

FIGURE 9.4: (a) Cylindrical polar coordinates (r, φ, z) and Cartesian coordinates (x, y, z). 
(b) The volume element in terms of cylindrical polar coordinates dV = pdpdφdz.

Exercise 9.11 Deduce from the example that

2xe dx
∞ −

− ∞
=∫ p

and hence that

2

0

1
2

xe dx p
∞ − =∫

1This notation is common in physics, but not universal. When working 
on a particular problem, always check the definitions.
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From Figure 9.4(a) we deduce the relation between the (x, y, z) 
and (r, φ, z) labels of the point P:

   

( )
( )

cos ,

sin ,

.

x

y

z z

r f
r f

=

=
=  

(9.8)

The inverse relation is

   

( )
( )

1/22 2

1

,

tan / ,

.

x y

y x

z z

r

f −

= +

=

=  

(9.9)

Exercise 9.12 What are the surfaces

  (i) r = constant,

 (ii) z = constant,

(iii) φ = constant?

Exercise 9.13 What does the function

f(x, y, z) = zn ln(1+ x2 + y2) 

become as a function of cylindrical polar coordinates (r, φ, z)?

Note that in Exercise 9.13 the function is independent of φ; we 
say that it is axially symmetric. If n = 0 the function is independent 
of both φ and z; we say that the function is cylindrically symmetric.

Example 9.11 Show that a function that is cylindrically 
symmetric is constant on cylinders centered on the  z-axis.

If f is cylindrically symmetric it is independent of both φ and z, 
i.e. it is a function of r only, f(r). Thus f is constant on surfaces r 
= constant, i.e. on cylinders.
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9.9. VOLUME INTEGRALS (CYLINDRICAL POLAR)

In cylindrical polar coordinates (r, φ, z) the element of volume 
is (from Figure 9.4b)

dV = dr × rdφ × dz = pdpdφdz.

We can use this to integrate a function over a region of three-
dimensional space (solid body). Instead of

( ), ,f dV f x y z dx dydz=∫ ∫∫∫
we can write

( ), , ,f dV F z d d dzr f r r f=∫ ∫∫∫
where F(r, φ, z) is the function f(x, y, z) expressed in terms of r, φ 
and z. This is useful if the limits of integration are readily expressed 
in (r, φ, z) coordinates.

Example 9.12 Find the integral of the function x2 + y2 over 
the cylinder 0 ≤ r ≤ 1, 0 ≤ z ≤ 1.

First we transform the function to cylindrical coordinates

x2 + y2 = (r cos(φ))2 + (r sin(φ))2 = r2. 

The correct element of volume is

dV = rdrdφdz,

while the limits of integration are 0 ≤ r ≤ 1, 0 ≤ z ≤ 1, 0 ≤ q ≤ 2p. 
Put these together and evaluate the integral and we have that

( ) [ ] [ ]
141 2 1 2 12 2 2

0 00 0 0
04

1
2 1 .

4 2

V
x y dV d d dz z

rr r r f f
 

+ = × =  
 

= × × =

∫ ∫ ∫ ∫
p p

p
p
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y

z

x

dφ

dz

dA

adφ

r

a

FIGURE 9.5: The cylindrical element of area for a cylinder of radius r = a: dA = adφdz.

Exercise 9.14

(i)  Find the integral of the function f(x, y, z) = xyz over the 
wedge defined by 0 ≤ r ≤ 1, 0 ≤ φ ≤ p/2, 0 ≤ z ≤ 2.

(ii) The number per unit volume of bacterial fossils in a 
cylindrical wedge of rock, 0 ≤ φ ≤ p/2, of radius 1m and 
height 2m is 105 xyz m–3. How many fossils are in the rock?

9.10. INTEGRALS OVER CYLINDRICAL SURFACES

Suppose we are given a function f(φ, z) at each point on some part 
of the surface of a cylinder r = a = constant. The function might repre-
sent the surface mass density of the cylinder, or the surface density of 
electric charge, or the flux of energy through the surface, and so on. We 
might then wish to evaluate the integral of f over the surface (to get the 
total mass, charge etc.). From Figure 9.5 we have dA = adφdz. 

So

( ),f dA f z ad dzf f=∫ ∫∫
the surface integral of f over the cylindrical surface.
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y

z

x
φ

θ r

O

P

(a)

y

z

x
dφ

dθ

r sin(θ)dφ

r

dV

drθ

(b)

FIGURE 9.6: (a) Spherical polar coordinates (r, φ, q) and Cartesian coordinates (x , y, z).  
(b) The volume element in terms of spherical polar coordinates dV = r2 sin(q)drdqdφ.

Example 9.13 Find the integral of the function z sin(φ/2) over 
the cylindrical surface r = 4, 1 ≤ z ≤ 2.

We write down the element of area on the surface:

dA = 4dφdz.

The limits of integration required to cover the portion of the 
cylinder once are 0 ≤ φ ≤ 2 p and 1 ≤ z ≤ 2. Finally, we write 
down and evaluate the integral:

( ) ( )

( )( )

222 2 2

01 0
1

sin 2 4 4 2cos 2
2

8 2 2 1 2 1 6 4 24.

z
z d dzf f f

 
 = −   

 
= − − ×− + × = × =

∫ ∫
p p

Exercise 9.15 Find the integral of the function 
( )

( )2

cos

1

f

+ z
over the 

part of the surface of the cylinder r = 2, −p/2 ≤ φ ≤ p/2, z ≥ 0.
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9.11. SPHERICAL POLAR COORDINATES

We can label points in space by a distance and two angles as 
in Figure 9.6(a). The coordinates (r, q, φ) are the spherical polar 
coordinates of the point P. From the figure we deduce the relation 
between the (x, y, z) and (r, q, φ) labels of P:

  

( ) ( )
( ) ( )
( )

sin cos ,

sin sin ,

cos .

x r

y r

z r

q f
q f
q

=

=

=  (9.10)

The inverse relation is

  

( )
( )( )

( )

1/22 2 2

1/21 2 2 2

1

,

cos / ,

tan / .

r x y z

z x y z

y x

q

f

−

−

= + +

= + +

=  (9.11)

Note carefully (and remember) how the angles q and φ are defined: 
this is the standard convention and you need to know it − q is the  
co-latitude of P (not the latitude; i.e. it is measured down from the z-axis, 
not up from the equator). The angle φ is measured in the (x, y) plane 
from the x-axis.

Exercise 9.16 What are the surfaces

(i) r = constant,

(ii) q = constant,

(iii) φ = constant?

Exercise 9.17 What does the function f(x, y, z) = zn ln(1+ x2 + y2) 
become in spherical polar coordinates?

Note that the function in Exercise 9.17 is independent of φ: it is 
axially symmetric. A function that is independent of both q and φ is 
said to be spherically symmetric.
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9.12. VOLUME INTEGRALS (SPHERICAL POLAR)

In spherical polar coordinates (r, q, φ) the element of volume is 
(Figure 9.6b):

dV = dr × rdq × r sin(q)dφ = r2 sin(q) drdqdφ.

We can use this to integrate a function over the volume of a solid 
body. Instead of

( ), , .f dV f x y z dxdydz=∫ ∫∫∫
we can write

( ) ( )2, , sin .f dV f r r drd dq q q=∫ ∫∫∫ f f

This is useful if the limits of integration are readily expressed in 
(r, q, φ) coordinates.

Exercise 9.18

(i)  Show that f(x, y, z) = ln(1 + x2 + y2 + z2) is spherically 
symmetric.

(ii)  Show that a spherically symmetric function is constant on 
spheres centered on the origin.

Example 9.14 Find the integral of the function f(x, y, z) = z  
over the volume of the hemisphere 0 ≤ r ≤ 1, 0 ≤ q ≤ p/2,  
0 ≤ φ ≤ 2p.

For a volume that is part of a sphere we choose to work in 
spherical polar coordinates. Write the function in spherical 
polars:

f(x, y, z) = z = r cos(q).
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Note the range of q required to cover the hemisphere. If we 
choose points in the quadrant of the (x-z) plane, φ = 0, 0 ≤ q ≤ p/2 
and swing this around through 2p we cover the complete hemisphere. 
Rotating the arc φ = 0, 0 ≤ q ≤ p gives the complete sphere.

Next, write down the limits for the integration: these are given as

0 ≤ r ≤ 1, 0 ≤ q ≤ p/2, 0 ≤ φ < 2p.

We can now write down the integral

( )( ) ( )( )
( ) ( )( )

( ) [ ]

2 /2 1 2

0 0 0

1 /2 23

0 0 0

1 /24
22
0

00

cos sin

sin sin .

1
sin

4 2

1 1
2 .

4 2 4

zdV r r drd d

r dr d d

r

q

q

q q q f

q q f

q f

=

=

=

=

   =      

= × × =

∫ ∫ ∫ ∫
∫ ∫ ∫

p p

p p

p
p

p
p

Exercise 9.19 What range of coordinates covers the whole 
sphere of radius a?

Exercise 9.20 Find the integral of the function f(x, y, z) = z2 over 
the sphere r ≤ 1.

9.13. INTEGRALS OVER SPHERICAL SURFACES

Suppose we are given a function f(q, φ) at each point on some 
part of the surface of a sphere, r = a = constant. We might need 
to evaluate the integral of f over the surface. From Figure 9.7 
the element of area is dA = a sin(q)dφ × adq = a2 sin(q) dqdφ. So

( ) ( )2, sin ,f dA f a d dq f q q f=∫ ∫∫



328 • Mathematical Physics

y

z

x
dφ

dθ

a

dA

adθ

a sin(θ)dφ

FIGURE 9.7: The spherical element of area for a sphere of radius r = a.

the surface integral of f over the spherical surface. Note the factor of 
sin(q) in the integrand. The area is not a2dqdφ. You can see from the 
figure that the same dqdφ near the poles has a smaller area than near 
the equator. The factor of sin(q) takes this into account.

Example 9.15 Find the integral of the function f(x, y, z) = z 
over the surface of the hemisphere r = a, 0 ≤ q ≤ p/2, 0 ≤ φ  
≤ 2p.

Because the surface is part of a sphere it is convenient to use 
spherical polar coordinates. Write the function in spherical 
polars:

z = a cos(q).

Next, write down the element of area

dA = a2 sin(q) dqdφ.

Write down the limits of integration for each of the variables:

0 ≤ q ≤ p/2, 0 ≤ φ ≤ 2p.
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9.14. SOLID ANGLE

The angle, measured in radians, subtended by an arc of the unit 
circle at its center is the length of the arc (Figure 9.8a). The angle, in 
radians, subtended at a point O by an element of length dl, distance 
r from O, is

( )cosl i
r

d
dq =

where i is the angle between the normal to the element and the line 
from O to the element (Figure 9.8b).

Now we write down and evaluate the integral:

( )( ) ( )

( ) ( )( )

( ) [ ]

2 /2 2

0 0

/2 23

0 0
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23 2 3 3
0

0

cos sin
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1 1
sin 2 .

2 2

zdA a a d d

a d d

a a a

q

q

q q q f

q q f

q f

=

=

=
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 = = × × =  

∫ ∫ ∫
∫ ∫

p p

p p

p
p p p

Exercise 9.21

(i)  Find the integral of f(x, y, z) = 1 − z2 over the surface of the 
sphere r = 1.

(ii)  The moment of inertia of a uniform sphere of radius a 
and unit surface density about an axis through its cen-
ter at the origin is given by the integral of a2 − z2 over 
the surface of the sphere. Find the moment of inertia of 
such a sphere.
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1

q

q

O

(a)

r
dl

dq
O

P
i

(b)

FIGURE 9.8: (a) The length of an arc of the unit circle about point O is equal to the angle 
(in radians) at O subtended by the arc. (b) A tiny length element dl viewed at a distance r 
from point O is inclined by an angle i from the circle of radius r centered on O. The angle is  
dq = (dl cos i)/r.

i

y

z

x

r

dA
P

O

(a)

y

z

x

dA

O

(b)

FIGURE 9.9: (a) The area element dA at point P, a distance r from point O, with angle i be-

tween the normal to the area element and the line OP. (b) The solid angle subtended by dA 
from O can be thought of as the area of the image of dA projected onto a unit sphere from 
point O.

The solid angle, measured in steradians (sr), subtended by a cap 
of the unit sphere at its center is the area of the cap (Figure 9.10). 
For the purpose of visualization the solid angle subtended at O  
by some surface S can be thought of as the area of the shadow 
that S casts (when lit from O) on the surface of a large sphere,  
center O, regarded as of unit radius. Equivalently, for the purpose  

®
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of calculation: the solid angle, in steradians, subtended at a point O 
by an element of area, A, distance r from O is

 
( )

2

cosA i
r

d
d =W  (9.12)

where i is the angle between the normal to the element and the 
line from O to the element (Figure 9.9a,b). The solid angle, Ω, sub-
tended by a surface is the integral of cos(i)/r2 over the surface, i.e.

 
( )
2

cos
.

i
d dA

r
= =∫ ∫W W  (9.13)

The concept of solid angle is important in many areas of physical 
science. To evaluate the integral for solid angle in any particular case 
you will need i and r as functions of q and φ. This will either be given 
or deducible for the given surface.

Example 9.16 Find the solid angle subtended by a sphere at 
its center.

We use the formula (9.13). We write down the element of area 
at P = (r, q, φ) on the sphere assuming a radius r:

dA = r2 sin(q) dqdφ.

Now work out the angle i at P, the angle between the radius 
vector and the normal to the surface: here i = 0, because the 
normal is along the radius vector, and so cos(i) = 1. Write down 
the limits of integration, chosen here to cover the whole sphere:

0 ≤ q ≤ p, 0 ≤ φ ≤ 2p.

Substitute in equation (9.13):

( )

( ) ( )

2
2

20 0

2

00 0

sin

sin 2 cos 4 .

r
d d d

r

d d
q q

qq

q
q f

q q f q
= =

==

= =

= = − =  

∫ ∫ ∫

∫ ∫

W W
p p

p p p
p p

Note that the result is independent of r.
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y

z

x

O

Pq

FIGURE 9.10: The solid angle on a sphere.

In fact the sphere subtends solid angle 4p steradians at every 
interior point, not just the center. (You need to know this.)

Exercise 9.22 What is the solid angle subtended by the sector 
of a sphere 0 < φ < p/4, 0 < q < p/4 at its center? See Figure 
9.11(a).

z

y

x

φ = π/4φ = 0

q = 0

(a)

A

(b)

q = p/4

q

FIGURE 9.11: (a) Exercise 9.22. (b) Exercise 9.24.
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Exercise 9.23 What is the solid angle subtended by a portion 
of a cylindrical surface of radius a, 0 ≤ φ ≤ p/2, −a ≤ z ≤ a at 
the origin?

Exercise 9.24 A small hole of area A is cut in a sphere containing 
a uniform radiation field which carries an energy per unit time 
per unit normal area per unit solid angle I. Therefore the rate at 
which energy is emitted into the surrounding space is

( )
hemisphere

cosIA dq∫ W

integrated over the hemisphere 0 ≤ q ≤ p/2. Show that equation 
(24) gives pAI. See Figure 9.11(b).

Exercise 9.25 The pressure exerted by a gas of kinetic energy 
density u is

( )2

hemisphere

1
cos ;P u dq= ∫p W

assuming that u is independent of angle, perform the integration 
to find P.

Exercise 9.26 Show that the solid angle subtended by a plane 
rectangle of sides 2a, 2b at a point distance l along the normal 
through its center can be written

( )3 22 2 2
.

b a

b a

l dxdy

x y l−
=

+ +
∫ ∫W

9.15. SKETCHING SURFACES

Sketching three-dimensional surfaces from a given formula is 
hard: it can be simplified if the surface has some symmetry (e.g. 
axial, cylindrical, spherical). In such cases the formula will simplify 
in the appropriate coordinate system (found by trial and error).



334 • Mathematical Physics

z

y
x

(a)

z

y
x

(b)
FIGURE 9.12: (a) Example 9.17: z = x2 + y2. (b) Example 9.18: z = (1 − x2 − y2)1/2 + 2. In both cases 
the functions have axial symmetry (because they depend on x and y only through r2 = x2 + y2),  
so we can draw the graph of the function z = f(0, y) on the (y, z) plane, and then rotate about 
the z-axis.

Example 9.17 Sketch the surface z = x2 + y2.

In cylindrical polar coordinates this simplifies to z = r2, i.e. z 
is independent of φ, so the surface is axially symmetric (i.e. a 
surface of revolution about the z-axis). We need therefore only 
plot the curve of z against r for fixed φ and rotate the result. 
In Figure 9.12(a), z has been plotted against r in the plane  
φ = 0 (i.e. the (z - x) plane, so r = x there) giving a parabola. This 
parabola has then been rotated about the z-axis to generate the 
paraboloid represented by the given equation.

Example 9.18 Sketch the surface z = +(1 − x2 − y2)1/2 + 2.
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Exercise 9.27 Sketch the surfaces

(i) z2 = x2 + y2,

(ii) z2 = 1 + x2 + y2.

Write Z = (z − 2); then the surface becomes

Z2 = 1 − x2 − y2, Z > 0.

In spherical polar coordinates based on the Z-axis (i.e. Z2 = r2 
cos2(q) with Z > 0), this becomes r2 = 1; Z > 0. The surface  
r2 = 1 is a sphere and the condition Z > 0 gives the hemisphere 
in Figure 9.12(b).

Revision Notes

After completing this chapter you should be able to

•	 Compute a given multiple integral

•	 Insert limits for an integral over a given plane region

•	 Insert the limits corresponding to a change in the order of 
integration over a plane region

•	 Define cylindrical and spherical polar coordinates

•	  Write down the transformations between Cartesian 
coordinates and cylindrical coordinates and spherical 
polar coordinates and their inverses

•	 Write down the elements of area and volume in these 
coordinate systems

•	 Use the appropriate elements of area and volume to 
integrate over parts of spheres and cylinders and their 
surfaces

•	 Define and compute a solid angle

•	 Recognize axial, cylindrical, and spherical symmetry
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9.16. EXERCISES

1. Evaluate 
1 2

0 0

y
x ydx dy 

  ∫ ∫ .

2. Write down an expression for the integral

( )
2

1 1
,

y
f x y dx dy 

  ∫ ∫

 with the order of integration reversed, after sketching the 
area of integration in the (x, y) plane.

3. Draw a diagram to show the area of integration in

( )
1

0
, ,

x

x
f x y dy dx 

  ∫ ∫

 and hence rewrite the integral in the form 
( ),f x y dx dy 

 ∫ ∫  with the correct limits of integration 
inserted.

4.   Write down the following integral with the order of inte-
gration reversed (including the correct limits):

( )
1 1 2

0 2
,

y
f x y dxdy∫ ∫ .

5.   Show that the integral of the function f(x, y) = xy2 over the 
region of the (x, y) plane bounded by the lines y = 0, x = 1 
and the curve y2 = x is 2/21.

6.   Let R be the tetrahedron given by x ≥ 0, y ≥ 0, z ≥ 0 and  
x + y + z ≤ 1. Show that

1
24R

ydx dydz=∫ ∫ ∫

 where the integration is over the volume of the tetrahe-
dron.

7.   Draw a diagram to show the relation between Cartesian 
coordinates (x, y, z) and standard spherical polar coor-
dinates (r, q, φ). What does the function f(x, y, z) = (x2 + 
y2)1/2/z become in spherical polar coordinates?
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8.   Draw a diagram showing the relation of standard spherical 
polar coordinates (r, q, φ) to Cartesian coordinates (x, y, z).  
Indicate on your diagram the standard cylindrical polar co-
ordinates (r, φ, z) and obtain the relation between (r, φ, z)  
and (r, q, φ).

9.   Find the integral of the function cos2(q) cos(φ/4) over the 
surface of the unit sphere centered at the origin.

10.   Find the integral of cos(2q) over the surface of the unit 
sphere. (q is the angle between the radius vector and a 
fixed direction.)

11.   If f = (x2+y2)z calculate the integral of f over the solid  
cylindrical wedge of unit radius, unit height in x ≥ 0, y ≥ 0, 
1 ≥ z ≥ 0.

12.   A spherical cap of angle a is the surface of a sphere, center 
O, cut off by a right circular cone of semi-angle a with 
vertex at O. Find the solid angle subtended at O by such a 
spherical cap. Hence show that a circular disc of angular 
diameter 2a at a very large distance (compared with its 
radius) subtends a solid angle at a point on its axis of 
approximately pa2.

13.   Find the solid angle subtended by a circular disc of radius 
3 cm at a point a distance 4 cm along the axis perpendicu-
lar to the disc through its center.

14.  Write down an expression for the solid angle subtended at 
the origin by an element of surface dS with normal n at a 
point with position vector r. Use this expression to estimate 
the solid angle subtended by a coin of radius 1.295 cm (or 
approximately 5/4 cm) at a distance of 1/2 m.



338 • Mathematical Physics

9.17. PROBLEMS

1.   Write down the element of volume dV in spherical polar 
coordinates (r, q, φ). Find

( )( )exp cos
,

V

ir r
I dV

r

q −
= ∫



 where ∈ is a constant, 1i = − , and the integral is taken 

over all space. Hence show that 
0

lim 4I
→

=


p .

2.   A hemisphere of radius 2  is drilled from the pole to 
the center to remove material within the surface  
z = x2 + y2. Show that the volume remaining is that of a 
unit sphere.

3.   Show that the solid angle subtended at the origin by the 
portion of the surface of a right circular cylinder of radius a 
with axis along the z-axis between the planes x = z and  
x = −z, x > 0 can be written

( )( )

( ) 22 cos

3 22 cos 2 2
.

a

a

a
dz d

a z
f

− −

 
 =
 + 

∫ ∫W
p f

p f

4.   (a) Show that the solid angle subtended by a circular disc 
of unit area at a point on its axis unit distance from its cen-
ter is

( ) 3 220
2 .

1
D

dr r

r

1
=

+
∫

p
pW

(b)  Show that the solid angle subtended at the origin by a 
triangle with vertices at (0, 0, 1), (a, 0, 1), (a, aa, 1), (a > 0,  
a > 0) is

( ) 3 22 20 0
.

1

a a dydx

x y

a

∆ =
+ +

∫ ∫W
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  (c)  From (b) deduce an expression for the solid angle, Ωn, 
subtended by an n-sided regular polygon of unit area 
at a point on its axis unit distance from its center, and 
show that this can be written as

( )

1

3 20 0 2
3 22

2

2 .

1 1
1

x n

n

dy
n dx

y
x

x

=
 

+ + + 

∫ ∫W
p p

By approximating the inner integral in the expression for 
Ωn show that Ωn ≤ ΩD, and hence that a regular polygon 
subtends a smaller solid angle than a disc of the same 
area.





CHAPTER 10
PARTIAL DERIVATIVES

In this unit we extend the rules for differentiating functions of a 
single variable to functions of several variables. We shall then be 
able to deal with functions of the three space coordinates and func-
tions of space and time. This step is essential if we are to be able to 
formulate the laws of the physical sciences in more than one space 
dimension in a general way. As an example, you are familiar with 
how to find a maximum or minimum of a function of one variable, 
but how do you find these for a function of two variables? Pictori-
ally this is equivalent to asking how to find the summit of a hill; you 
might also need to find the steepest way down. We also consider the 
multi-dimensional analogues of the chain rule for differentiation and 
Taylor series for the expansion of a function about a given point, and 
we introduce the notion of a differential.

10.1. FUNCTIONS OF TWO VARIABLES

Let f(x, y) = x2 + xy2. This means that for each x and y (chosen inde-
pendently) there corresponds a value for f given by this expression.

Example 10.1 At (x, y) = (1, 0), f(x, y) = x2 + xy2 has the value 
12 + 1 × 02 = 1; at (x, y) = (1, 2), f has the value 12 + 1 × 22 = 5.
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FIGURE 10.1: The function ( ) − −= + −
2 21 42 22 x yz x y e . (a) A surface plot. (b) A contour(level 

curves) plot. The axes have been offset from the origin in (a) to avoid cluttering the plot.

The graph of a function of two variables f(x, y) is the set of all 
points (x, y, z) for which z = f(x, y). We can think of this as a surface, 
with z being the height of the surface that varies with x and y. Using 
a computer we can render such a surface, as in Figures 10.1(a) and 
10.2(a). Another way to visualize a function of two variables is to 
plot the level curves, the curves of constant z = f(x, y). These are 
just contour lines of the surface, as shown in Figures 10.1(b) and 
10.2(b). It is usually best to plot contours for values of z that are 
evenly spaced. Where the contour lines are close together, the func-
tion must be changing rapidly (increasing or decreasing over short 
distances in the (x, y) plane in a direction perpendicular to the con-
tours); where the contours are widely separated the function must 
be varying slowly (staying nearly constant).

Exercise 10.1

(i) What value does the function f(x, y) = x3y + y2 have at  
(x, y) = (−1, 3)?

(ii) What value does g(u, v) = u3v + v2 have at (u, v) = (−1, 3)?

(iii) And at (u, v) = (2, 4)?

y

x

z

(a)

x

y

(b)
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FIGURE 10.2:  The function z = sin(x) sin(y). (a) A surface plot. (b) A contour (level curves) 
plot. The axes have been offset from the origin in (a) to avoid cluttering the plot.

Let f(x, y) = x2y + y2. Keeping y constant temporarily we find 
df
dx

 by the standard rules of differentiation:

( )2 0 treating  as constant temporarily .
df

xy y
dx

= +

If instead we keep x constant temporarily we can find 
df
dy

 by the 

standard rules:

( )2 2 treating  as constant temporarily .
df

x y x
dy

= +

y

x

z

(a)

x

y

(b)

Example 10.2 If f(x, y) = x3/y what is (i) df
dx

 if y is temporarily 

kept constant and (ii) df
dy

 if x is temporarily kept constant?

(i) 
23df x

dx y
=  (keeping y constant).

(ii) 
3

2

df x
dy y

= −  (keeping x constant).
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10.2. PARTIAL DERIVATIVES

Notation: Instead of writing “df/dx if y is temporarily kept con-
stant” we use the abbreviated notation

.
y

f
x
∂ 

 ∂ 

We call this the partial derivative of f with respect to x (with y 
held constant). The expression is read as “partial df by dx.” Similarly 
“df /dy (keeping x temporarily constant)” becomes

,
x

f
y

 ∂
 
∂ 

the partial derivative of f with respect to y, and is read as “partial df 
by dy.” If f is already understood to be a function of x and y we can 
abbreviate these further to

and .
f f
x y
∂ ∂
∂ ∂

The “curly” ∂/∂x signifies that everything other than x is to be 
kept constant temporarily (i.e. during the process of differentiation). 
There are a number of alternative notations; the following mean 
exactly the same thing:

, , , , .,
f f

f f fx x xx xy

∂ ∂  ∂ ∂ ∂ 

Interpretation: The function f(x, y) can be represented by plot-
ting its value at (x, y) as the height of a surface above the point (x, y)
in the (x, y) plane, as in Figure 10.3. If we keep y constant, f is then 

Exercise 10.2 If f(x, y) = x2y, what is

(i) 
df
dx

 if y is temporarily kept constant,

(ii) 
df
dy

 if x is temporarily kept constant?
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a function of x only (for that value of y); e.g. if y = 1 and f(x, y) = 
x2+y2 then f = x2 + 1. This is represented as the cross-section of f in 
the plane y = 1, i.e. the curve z = x2 + 1. (Figure 10.3 shows a similar 
function.)

Exercise 10.3 If f(x, y) = x sin(y), what is

(i) 
∂
∂
f
x

(ii) 
f
y
∂
∂

(iii) ( )1,0
f
y
∂
∂

–i.e. 
f
y
∂
∂

 evaluated at (x, y) = (1, 0)?

Exercise 10.4 If z(u, V) = u2 + V2, what is zu?

(x0, y0, z0) (x0, y0, z0)

plane: y = y0    plane: x = x0    

x

z

y

(a)

x

z

y

(b)

FIGURE 10.3:  The partial derivative as the slope of a cross-section. (a) A function z = f(x, y)  
plotted as a surface. A plane of constant y (= y0) is shown. The curve z = f(x, y0) is the  
intersection of the surface with this plane. The gradient of the tangent of this curve at some 
point P = (x0, y0) is the partial derivative of z with respect to x at P. (b) The same surface, plotted  
with a plane of constant x (= x0). The curve z = f(x0, y) is the intersection of the surface with this 
plane. The gradient of the tangent of this curve at P is the partial derivative of z with respect 
to y at P.
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The function obtained from f(x, y) by keeping y = y0 constant 
is the cross-section of the surface z = f(x, y) in the plane y = y0. 
The partial derivative fx(x0, y0) is the slope of this curve at the point  
(x0, y0).

10.3. DIRECTIONAL DERIVATIVES

We have seen that (∂f/∂x)y is the slope of the surface z = f(x, y) in 
the x-direction, i.e. parallel to the x-axis (see Figure 10.3). Similarly, 
(∂f/∂x)x is the slope of the surface in the y-direction. The slope of the 
surface in the direction making angle q (counterclockwise) with the 
x-axis is

 ( ) ( )cos sin .
f f

f
x y

q q
∂ ∂

∇ = +
∂ ∂û   (10.1)

We call this expression the directional derivative of f. It uses a 
special symbol, ∇ (the “del” operator) which is used for derivatives 
and gradients in more than one dimension. Here, û is a unit vector 
making an angle q with the x-axis. So ∇ûf is the gradient of f in the 
direction of the vector û.

x

z

y

P

FIGURE 10.4:  Illustration of the directional derivative. A function z = f ( x ,  y )  is plotted as 
a surface. At a point P the tangent plane along with tangents parallel to the x- and y-axes are 
marked. Also marked is the tangent of the function z in some arbitrary direction following 
a curve along the surface. The gradient of this is the directional derivative, which is a linear 
combination of the gradients along each of the axes.
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There is a connection here to vectors that we will mention in 
passing, but we will return to this idea when we study vector calcu-
lus. If û is a unit vector at an angle q with the x-axis then û = cos(q)i +  
sin(q)j, and its components are (cos q, sin q). We can also define a 
vector whose components are the partial derivatives of f. We give 
this the special symbol ∇f, so

+ = , .
f f f f

f
x y x y

 ∂ ∂ ∂ ∂
∇ =  

∂ ∂ ∂ ∂ 
i j

Now, the dot product of û and ∇f gives the directional derivative

( ) ( )û cos +sin ,
f f

f f
x y

q q
∂ ∂

∇ = ⋅∇ =
∂ ∂

û

which is the same as we had before.

Example 10.3 Find the derivative of f = 1 − x2 − y2 in the 
direction making angle p/4 (counterclockwise) with the x-axis 
at the point (1, 2).

The derivative in a particular direction is given by equation 
(10.1) so we first need the partial derivatives of f:

2 , 2 .
f f

x y
x y
∂ ∂

= − = −
∂ ∂

Inserting these values into (10.1) we get

directional derivative = cos(p/4)(−2x) + sin(p/4)(−2y).

Since we want the directional derivative at the point (1, 2) we 
let x = 1 and y = 2:

( ) ( )2 2
directional derivative 2 4 3 2.

2 2
= − + − = −

Exercise 10.5 Find the derivative of f = x3 + y2 in the direc-
tion making an angle 60° (counterclockwise) with the x-axis at the 
point ( )1, 3− .
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10.4. FUNCTIONS OF MANY VARIABLES

The notion of a partial derivative extends to functions of more 
than two variables (except that we cannot now draw a picture).

Example 10.4 Let (x, y, z) be independent variables and let 
r(x, y, z) = (x2 + y2 + z2)1/2. Find (∂r/dx)y,z, the derivative of r 
w.r.t. x keeping y and z constant. (We usually write this as just 
∂r/dx if it is understood that r is a function of x, y, z.) Note 
that, by assertion, z is here an independent variable, on the 
same footing as x and y, whereas in Section 10.2, z was used 
for a function of x and y. Care is needed to distinguish the 
dependent and independent variables in a given problem.

We are to differentiate r with respect to the variable x. 
Thus we shall treat the other variables as constants for now. 
If this is not clear consider the following: y2 and z2 are to be 
treated as constant so use a notation that makes this clear, say 
y2 + z2 = a2. Then r = (x2 + a2)1/2 which can be differentiated 
with respect to x, as a function of a function, in the usual way 
(i.e. by the chain rule):

( ) 1 22 21
2 .

2
dr

x a x
dx

−
= + ⋅

Now replace a2 by y2 + z2 and we have that

( )1 22 2 2

1 2
.

2
r x x
x rx y z

∂
= =

∂ + +

With more practice you can simply imagine y and z to be 
constants and write the calculation directly.

Exercise 10.6 If f(x, y, z) = (x2 + y2 + z2)−1/2 write down

(i) ∂f/∂x,  (ii) ∂f/∂y,  (iii) ∂f/∂z.

Exercise 10.7 If g(t, u, v, w) = t + u2v3w4, what is 
g
v
∂
∂

?
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10.5. HIGHER DERIVATIVES

Let f(x, y) = 3x3y2. We have ∂f/∂x = 9x2y2 and ∂f/∂y = 6x3y. We 
can now differentiate again, apparently in four ways. We have

( )2 2 29 18 .
f

x y xy
x x x

∂∂ ∂  = = ∂ ∂ ∂ 
Similarly

( )2 2 29 18 .
f

x y x y
y x y

∂∂ ∂  = = ∂ ∂ ∂ 

We also have that

( )3 26 18 ,
f

x y x y
x y x

 ∂∂ ∂
= = 

∂ ∂ ∂ 

and

( )3 36 6 .
f

x y x
y y y

 ∂∂ ∂
= = 

∂ ∂ ∂ 

We write these second derivatives more compactly as
2 2 2 2

2 2 2 3
2 218 , 18 , 18 , and 6 .
f f f f

xy x y x y x
x x y y x y

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂ ∂ ∂

If we define the mixed second derivative fxy to mean (fx)y  
(i.e. ∂/∂y(∂f/∂x)) we can write even more succinctly fxx = 18xy2,  
fxy = 18x2y etc.

Exercise 10.8 If f(x, y, z) = (x2 + y2 + z2)1/2, find

(i) fx,  (ii) fy,  (iii) fxx,  (iv)fyx,  (v) fxy,  (vi) fyy.

Note in the above example and in Exercise 10.8 we have that

 
2 2

equivalently .yx xy

f f
f f

x y y x
∂ ∂

= =
∂ ∂ ∂ ∂   (10.2)

This can be shown to be the case for reasonably smooth func-
tions (those normally occurring in physics): the order in which par-
tial derivatives are taken does not matter.
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10.6. FUNCTION OF A FUNCTION

We now examine the rule for differentiating a “function of a 
function” (recall Section 1.3) for functions of many variables. If we 
have some function f(u) where u(x, y) is itself a function of (x, y) we 
wish to find the rule that gives us ∂f/∂x etc. Here, f can be written 
either as a function of just u, or as a function of both x and y together. 
If u were a function only of x the chain rule would give

.
df df du
dx du dx

=

But u(x, y) is a function of x and y. However, we hold y constant 
when we compute the partial derivative with respect to x. So

 .
f df u
x du x
∂ ∂

=
∂ ∂

  (10.3)

where the curly ∂’s remind us that y is being held constant. Other-
wise there is nothing new here. (Notice we do not need the curly ∂’s 
for df/du since f can be written as a function of u only.)

Exercise 10.9 Let f = ex log(x + y). Find fx and fy and verify that 
fxy = fyx.

Example 10.5 Let r(x, y, z) = (x2 + y2 + z2)1/2, and let f = 1/r. 
Find ∂f/∂x.

To obtain ∂f/∂x, we treat y and z as constants. We apply

.
f df r
x dr x
∂ ∂

=
∂ ∂

We have from Example 10.4 that

,
r x
x r
∂

=
∂
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This example is important in calculations that involve the inverse 
square law.

and we can see that

2

1
.

df
dr r

= −

So, these give 

2 3

1
.

f x x
x r r r
∂

= − ⋅ = −
∂

Exercise 10.10

(i) Let r(x, y, z) = (x2 + y2 + z2)1/2 and let f = 1/rn. Find .
r
x
∂
∂

(ii) Let f = 1/r; find 
2

2

f
x

∂
∂

 and write down expressions for 
2

2

f
y

∂
∂

 

and 
2

2

f
z

∂
∂

.

Let f(u) be a given function of u and let u(x, y, z) be a given func-
tion of (x, y, z). If u = u(x, y, z) is substituted for the variable in f(u), 
then we have seen that

,
f df u
x du x
∂ ∂

=
∂ ∂

but in general

 
2 2 2

2 2 2 ;
f d f u

x du x
∂ ∂

≠ ×
∂ ∂   (10.4)

i.e. we cannot simply change the first derivatives for second deriva-
tives and expect the equation to be valid.

Exercise 10.11 Demonstrate in equation (10.4) by means of 
an example (of your choice) for the functions f(u) and u(x, y, z). 
Establish the correct formula

22 2 2

2 2 2 ,
f d f dfu u

x du x du x
∂ ∂ ∂ = × + × ∂ ∂ ∂ 

and verify that this is correct for your example.
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10.7. IMPLICIT DIFFERENTIATION

We can partially differentiate both sides of an equation using the 
“function of a function” rule, and then rearrange to find the partial 
derivative that we seek (recall Section 1.5). Apart from the use of 
curly ∂ there is nothing new here.

Example 10.6 Let r(x, y, z) be given by r2 = x2 + y2 + z2.  

Find .
r
x
∂
∂

First, differentiate the left side, which is a function (r2) of a 
function r(x, y, z), with respect to x:

( ) ( )2
2 2 .

d r r r
r r

x dr x x
∂ ∂ ∂

= =
∂ ∂ ∂

On the right side y and z are constants when differentiating 
partially with respect to x; thus

( )2 2 0 0.r x
x
∂

= + +
∂

Comparing these two we see that

.
r x
x r
∂

=
∂

Exercise 10.12 Let sin2(w) = x2 + y2 + z2. Show that

( )
2

.
sin 2

x
x

∂
=

∂
w

w
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10.8. DERIVATIVE WITH RESPECT TO A PARAMETER

The following is a simple but important application of partial dif-
ferentiation. We have a function of two variables, f(x, t), and we wish to 
know the derivative with respect to x of its integral with respect to t. To 
differentiate an integral with respect to a parameter the rule is

 ( )( ) ( ),
,

b b

a a

f x td
f x t dt dt

dx x

∂
=

∂∫ ∫   (10.5)

On the left side we imagine performing the integral to obtain a 
function of x which we then differentiate (giving another function 
of x).On the right side we imagine differentiating the integrand first 
with respect to x and then integrating with respect to t to obtain a 
function of x. Equation (10.5) says that the order in which we do the 
differentiation does not matter: we get the same result either way. 
(The partial derivative is required on the right of equation (10.5) to 
indicate that t is held temporarily constant for the differentiation. 
On the left the integral is a function only of x anyway, so we write this 
as an ordinary derivative.)

Given two ways of evaluating the same thing we are free to 
choose the easier. This enables us to find quickly some useful inte-
grals that would otherwise be difficult.

Example 10.7 Find 
( )1

0

sin txd
dt

dx t∫ .

Using equation (10.5) we have that

( ) ( )

( )

( )

( )

1 1

0 0

1

0

1

0

sin sin

cos

1
sin

sin
.

t

t

tx txd
dt dt

dx t x t

tx dt

tx
x

x

x

=

=

 ∂
=  ∂  

=

=   

=

∫ ∫

∫
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Example 10.8 From the equation

1

0

1
, for 1,

1
xt dt x

x
= > −

+∫
deduce that

( )( ) ( )
( )

!1

10

1
log , for 1,2, .

1

m
mx

m

m
t t dt m

x +

−
= =

+∫ 

First, differentiate the right side of the given equation:

( )
1

20

1 1
.

1 1
xd d

t dt
dx dx x x

 = = − +  +∫

Next we differentiate the left side (with respect to x) using 
equation (10.5). (Recall that you learned how to differentiate 
ax in Section 2.7.)

( )

( )( )

1 1

0 0

1

0
log .

x x

x

d
t dt t dt

dx x

t t dt

∂
=

∂

=

∫ ∫

∫
Therefore

( )( )
( )

1

20

1
log .

1
xt x dt

x
= −

+∫

If we differentiate both sides again we get another factor of 
log(t) from the differentiation of tx with respect to x:

( )( ) ( )( )
( )

1 2

30

1 2
log ,

1
xt t dt

x

− −
= −

+∫
and hence repeating this for m applications gives the desired 
result

( )( ) ( )
( )

!1

10

1
log , for 1,2, .

1

m
mx

m

m
t t dt m

x +

−
= =

+∫ 
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10.9. TAYLOR EXPANSION ABOUT THE ORIGIN

One of the most important applications of partial derivatives in 
physics is the approximation of a function by a simple formula near a 
given point. Suppose we are given the function f(x,y). We can evalu-
ate f and its partial derivatives at the point P = (0, 0). Let

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
2

2

0,0 , 0,0 , 0,0 ,

0,0 ,

x y

xx

f f
f P f f P f P

x y

f
f P

x

 ∂ ∂ = = =   ∂ ∂   
 ∂

=  ∂ 

 

(10.6)
and so on. The multiple variable form of Taylor’s theorem says that 
we can approximate the function f(x, y) near the point (0, 0) by a 
finite number of terms from the following series:

 
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

!

…
!

2 2

3 2 2 3

,
1

2
2
1

3 3 .
3

x y

xx xy yy

xxx xxy xyy yyy

f x y f P xf P yf P

x f P xyf P y f P

x f P x yf P xy f P y f P

= + +

 + + + 

 + + + + + 

 

(10.7)

Exercise 10.13 Show that ( ) ( )
2 2

0 0
sin cos

d
t tx dt tx dt

dx
= −∫ ∫

p p
.

Given that ( ) ( )2

0

sin 2
cos

x
tx dt

x
=∫

p p
, find ( )

2

0
sint t dt∫

p
.

(This is an alternative to integration by parts for evaluating this 
integral.)

Exercise 10.14 Given that 
0

1te dt
∞ −λ =

λ∫ , use the method of

Example 10.8 to find 
0

tnt e dt
∞ −λ∫ , for n = 1,2,. . .  .

Hence show that !
0

n xx e dx n
∞ − =∫  and show that 0! = 1 using this 

formula. (Thus, this formula agrees with the usual definition of n! 
for n a positive integer, and gives a meaning to cases when n is not 
a positive integer.)



356 • Mathematical Physics

Equation (10.7) is the Taylor expansion of f(x, y) about (0, 0). 
Taylor series centered on the origin, like these, are often called 
Maclaurin series. We discussed both Maclaurin and Taylor series for 
functions of a single variable in Sections 2.2 and 2.3.

The coefficients in each group of terms follow the binomial pat-
tern (Section 2.1), although in practice we almost never need the 
higher order ones. Note that however complicated our initial func-
tion f, the Taylor series involves powers of x and y only (in practice 
usually up to quadratic or cubic at most). This is the point of the 
calculation. If you end up with anything more complicated you have 
made a mistake.

Example 10.9 Find the Taylor series expansion up to second 
order of the function f(x,y) = sin(xy) about the point P = (0, 0).

We evaluate each of the required quantities at the given point 
(0, 0) in turn, starting with the function itself:

f(P) = f(0, 0)=sin(0) = 0.

Next, each of the first derivatives at P:

fx = y cos(xy), so fx(P) = 0 × cos(0) = 0,

fy = x cos(xy), so fy(P) = 0 × cos(0) = 0.

Then each of the second derivatives. Note that we compute all 
the derivatives and only then substitute values for x and y at P:

fxx = −y2 sin(xy), so fxx(P) = 0 × sin(0) = 0,

fyy = −x2 sin(xy), so fyy(P) = 0 × sin(0) = 0.

We can compute either of fxy or fyx (i.e. differentiate either fx or 
fy) since these are equal:

fxy = cos(xy) − xy sin(xy), so fxy(P) = cos(0) − 0 × sin(0) = 1.

Finally, using the definition of the Taylor series (10.7)

( ) 2 21
sin 0 0 0 0 2 1 0

2!
xy x y x xy y ≈ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +  

and so, sin(xy) ≈ xy + . . . to second order near (0,0).
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The result agrees with the first term of the series expansion for 
sin(u) with u = xy, as, of course, it must. You will find it extremely 
helpful if you set out your work systematically like this.

Exercise 10.15 Let f(x,y) = 1 + exey and P = (0, 0). Find fx(P), 
fy(P), fxx(P), fxy(P), fyy(P), and hence obtain the Taylor expansion of 
f about the origin to second order.

10.10. EXPANSION ABOUT AN ARBITRARY POINT

Suppose we are given the function f(x, y). We can evaluate f and 
its partial derivatives at the point P = (x0, y0). Let

( ) ( ) ( ) ( )0 0 0 0, , , ,x

f
f P f x y f P x y

x
∂

= =
∂

and so on. Taylor’s theorem says we can approximate the function 
f(x,y) near the point (x0,y0) by a finite number of terms from the fol-
lowing series:

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

0 0

22
0 0 0 0

,
1

2
2

x y

xx xy yy

f x y f P x x f P y y f P

x x f P x x y y f P y y f P

= + − + −

 + − + − − + − !
+…

 
(10.8)

Equivalently, we can write this as

( ) ( ) ( ) ( )

( ) ( ) ( )

0 0 0 0 0 0 0 0

0 0 0 0 0 0

, , , ,

1 2 2, 2 , , .
2

f x h y k f x y hf x y kf x yx y

h f x y hkf x y k f x yxx xy yy

+ + = + +

 + + + +… ! 
(10.9)

where h = x − x0 and k = y − y0 are the displacements from P. Equa-
tion (10.8) (or (10.9)) is the Taylor expansion of f(x, y) about the 
point P = (x0, y0). It is easier to see the form of the series if we leave 
out explicit reference to the point P.

( )0 0

2 2

3 2 2 3

,
1

2
2!
1

3 3 .
3!

x y

xx xy yy

xxx xxy xyy yyy

f x h y k f hf kf

h f hkf k f

h f h kf hk f k f

+ + = + +

 + + + 

 + + + + +  

 

(10.10)
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Example 10.10 Find the Taylor expansion of f = sin(xy) about 
the point P = (p/2, 1).

Evaluate each of the coefficients in the Taylor series in turn at 
the point P:

f(P) = sin(p/2) = 1,

fx = y cos(xy), so fx(P) = cos(p/2) = 0,

fy = x cos(xy), so fy(P) = (p/2) cos(p/2) = 0,

fxx = −y2 sin(xy), so fxx(P) = − sin(p/2) = −1,

fxy = cos(xy) − xy sin(xy),

so ( ) ( ) ( )cos 2 1 sin 2 2
2xyf P = − ⋅ ⋅ = −
p

p p p ,

fyy = −x2 sin(xy), so fyy(P) = −(p/2)2 sin(p/2) = −p2/4.

Substitute into the general form of the Taylor series (10.8):

( ) ( ) ( )

( ) ( ) ( )( )( )

( ) ( )

2

2

sin 1 2 0 1 0
1

2 1 2 2 1 2
2!

1 4 ,

xy x y

x x y

y 2

= + − × + − ×

+ − − + − − −

+ − − + 

p

p p p

p

and so

( ) ( ) ( )( ) ( )
2

2 21
sin 1 2 2 1 1 .

2 4
xy x x y y

 
= − − + − − + − + 

 


p
p p p

The result is a power series (or a quadratic if we stop after the 
second order terms). Near the point (p/2, 1) we can put X = x − p/2  
and Y = y − 1 and write the series more succinctly as

( ) 2 21
sin 1 .

2 2 8
xy X XY Y

2

= − − − +
p p

Exercise 10.16 Let f(x,y) = x3y4 + x4y3. Find the partial deriva-
tives of f up to second order at (1,1) and hence obtain the Taylor 
expansion of f about the point (1, 1) to second order.
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10.11. FUNCTION OF MORE THAN TWO VARIABLES

Suppose we are given the function f(x, y, z). We can evaluate f 
and its partial derivatives at the point P = (x0, y0, z0). Write

( ) ( ) ( ) ( )0 0 0 0 0 0, , , , , etc.x

f
f P f x y z f P x y z

x
∂

= =
∂

Taylor’s theorem says that we can approximate the function 
 f(x, y, z) near the point (x0, y0, z0) by a finite number of terms from 
the following series:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )

0 0 0

2
0 0 0

2
0 0 0

2
0 0 0

, ,
1

2
2!

2

2 .

x y z

xx xy

xz yy

yz zz

f x y z f P x x f P y y f P z z f P

x x f P x x y y f P

x x z z f P y y f P

y y z z f P z z f P

= + − + − + −

+ − + − −

+ − − + −

+ − − + − + 

 

(10.11)
Extensions to more variables follow a similar pattern, but you 

are unlikely to meet them.

To sum up then, if we need to find the behavior of a function 
near a given point we can approximate the function by a polyno-
mial, usually a quadratic, which is much simpler than the original 
function.

10.12. STATIONARY POINTS

We return to the problem of finding stationary points (from  
Section 1.8), now considering functions of more than one variable.

In two dimensions a stationary point can be a maximum, mini-
mum or saddle point. At a stationary point, by definition, f(x, y) is 
approximately constant (to first order) (Figure 10.5). A necessary 
condition for P = (x0, y0) to be a stationary point is that

 ( ) ( )0 0 0 0, 0, and , 0,
f f

x y x y
x y
∂ ∂

= =
∂ ∂   (10.12)
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or, in more compact notation, fx(P) = fy(P) = 0. If the derivatives 
along the two directions are both zero, then the derivative in any 
direction is zero (by Equation 10.1); i.e. the tangent plane at P is 
horizontal.

x

z

y

(x0, y0)

FIGURE 10.5:  Near a stationary point the function f(x, y) is constant to first order (in all 
directions).

Example 10.11 Find the stationary points of the function 
f(x, y) = x2y + 2xy2 + 6xy.

First, calculate fx and fy and set them equal to 0:

fx = 2xy + 2y2 + 6y = y(2x + 2y + 6) = 0 and

fy = x2 + 4xy + 6x = x(x + 4y + 6) = 0

for a stationary point. Now solve the two equations for x and y. 
One solution is (x, y) = (0, 0). If this is not the case then

(i) y ≠ 0 and so 2x + 2y + 6 = 0, or

(ii) x ≠ 0 and so x + 4y + 6 = 0.

If y = 0 then (ii) gives x = −6, while if x = 0 then (i) gives  
y = −3. If x ≠ 0, and y ≠ 0 then (i) and (ii) are two simultaneous 
equations for x and y which can be solved to give x = −2, y = −1. 
So we have found four stationary points

(x, y) = (0, 0), (−6, 0), (0, −3), and (−2, −1).

These are the stationary points of f.
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In order to identify the type of stationary point we use a second 
derivative test (compare with the test used for functions of a single 
variable in Section 1.8). We calculate the three second derivatives at P:

2 2 2

2 2, ,xx xy yy

f f f
a f b f c f

x x y y
∂ ∂ ∂

= = = = = =
∂ ∂ ∂ ∂

(There is no need to compute fyx because it is the same as fxy.)
We then compute

 D = ac − b2 = fxxfyy − (fxy)2.   (10.13)

If D > 0 then the point is a maximum or minimum; if not then 
it is a saddle point or requires more detailed investigation to iden-
tify its nature (see Figure 10.6). The second derivative test works as 
follows:

•	 If	D > 0 and fxx > 0 then P is a minimum (fyy will also be > 0).

•	 If	D > 0 and fxx < 0 then P is a maximum (fyy will also be < 0).

•	 If	D < 0 then P is a saddle point (a maximum in one direc-
tion and a minimum in another, like the top of a mountain 
pass).

•	 If	D = 0 then further investigation is needed.

maximum

minimum

saddle point

FIGURE 10.6:  Three different types of stationary point for a function of two variables. 
Maximum (left), minimum (center) and saddle point (right). Near a stationary point the 
function f(x, y) is constant to first order. As you can see from the figures, stationary points 
are important for the analysis of stability.

Exercise 10.17 Find the stationary points of the functions

(i) f(x, y) = x3 − 2x2 − 4x − y2 + 6y,

(ii) f(x, y) = xy2 − 2y − x.
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Example 10.12 Find the stationary point of the function  
f(x, y) = 3x2 − 2xy + y2 and determine its nature.

First we compute fx and fy to find the stationary point(s)

fx = 6x − 2y and fy = −2x + 2y.

At a stationary point fx = 0 and fy = 0 so from the second 
equation x = y and from the first 6x − 2x = 4x = 0 gives x = y = 0;  
hence P = (0, 0) is the only stationary point. To determine 
whether this is a maximum or minimum or saddle point we 
compute the second derivatives and D.

fxx = 6; fxy = −2; fyy = 2;
fxx(P) = 6 > 0; and fyy(P) = 2 > 0;

( ) ( ) ( )2 12 4 0.xx yy xyD f P f P f P= − = − >

So P = (0, 0) is a minimum.

Example 10.13 Find and determine the nature of the 
stationary points of the function

f(x, y) = x2y + 2y2x + 6xy.

The stationary points have been found in Example 10.11; they 
were (0, 0), (−6, 0), (0, −3), (−2, −1). So next we compute the 
second partial derivatives:

 fx = 2xy + 2y2 + 6y, fy = x2 + 4xy + 6x,
fxx = 2y, fxy = 2x + 4y + 6, fyy = 4x.

Now evaluate them at the stationary points:

P = (0, 0): fxx(P) = 0, fxy(P) = 6, fyy(P) = 0.

Therefore D = fxx(P)fyy(P) − fxy(P)2 < 0 and (0, 0) is a saddle 
point.
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(The function in Exercise 10.18(ii) has two peaks and no passes. 
This is a counter-example to the intuitive but incorrect idea that two 
mountain peaks must be separated by a pass. In effect the pass here 
has been shifted to infinity.)

Examination Using Taylor Series
Now we have seen how to find and test stationary points we can 

examine how this works using Taylor’s theorem. Suppose we are given 
a function f(x, y). We can use Taylor’s theorem to find the station-
ary points (maxima and minima) of f as follows. Suppose P = (x0, y0)  
is a stationary point and expand f as a Taylor series about (x0, y0):

f(x,y) ≈ f(P) + (x − x0)fx(P) + (y − y0)fy(P) + ...

P = (−6, 0): fxx(P) = 0, fxy(P) = −6, fyy(P) = −24.

Therefore D = fxx(P)fyy(P) − fxy(P)2 < 0 and (−6, 0) is a saddle 
point.

P = (0, −3): fxx(P) = −6, fxy(P) = −6, fyy(P) = 0.

Therefore fxx(P)fyy(P) − fxy(P)2 < 0 and (0, −3) is a saddle point.

P = (−2, −1): fxx(P) = −2, fxy(P) = −2, fyy(P) = −8.

Therefore D = fxx(P)fyy(P) − fxy(P)2 > 0 and so P is either a 
maximum or a minimum. Since fxx(P) and fyy(P) are negative, 
(−2, −1) is a maximum.

Exercise 10.18

(i) Find and determine the nature of the stationary points of 
the function

f(x,y) = x2 − 2x − y3 + y2 + 8y.

(ii) Show that the function

f(x,y) = −[x2y − (x + 1)]2 − (x2 − 1)2

has maxima at (1, 2) and (−1, 0).
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At a stationary point f is constant to first order; hence (x − x0)
fx(P) + (y − y0)fy(P) = 0 for all (x, y) near (x0, y0). Therefore P is a 
stationary point if fx = 0 and fy = 0 at P.

Just as was the case for functions of a single variable  
(Section 1.8) we can classify stationary points of a function of two 
variables as follows:

•	 (x0, y0) is a maximum if f(x, y) < f(x0, y0) for all (x, y) near  
(x0, y0).

•	 (x0, y0) is a minimum if f(x, y) > f(x0, y0) for all (x, y) near  
(x0, y0).

If neither condition holds, i.e. if for some (x, y), f(x, y) > f(x0, y0) 
and for some (x, y), f(x, y) < f(x0, y0), then

•	 (x0, y0) is a saddle point (see Figure 10.6).

To translate these conditions into a usable test we use Taylor’s 
theorem to tell us what f looks like near P = (x0, y0). This is clearer if 
we use h = x − x0, k = y − y0 to represent small displacements from 
x0, y0 and let a = fxx(P), b = fxy(P), c = fyy(P). Then Taylor’s theorem 
up to second order is

 ( ) ( ) ( ) ( ) ( )

( )

2 2

2 2

1
, 2

2
1

2
2

xx xy yyf x y f P h f P hkf P k f P

f P ah bhk ck

 = + + + + 

 = + + + 



 

(10.14)

The linear terms vanish by equation (10.12). We can rewrite  
this as

 ( ) ( ) 2 21 1
, 2

2 2
f x y f P ah bhk ck Q − = + + =   (10.15)

with Q = ah2 + 2bhk + ck2.

Now, if P is a maximum this means f(x, y) < f(P) near P, and so 
Q < 0; or if P is a minimum then f(x, y) > f(P) near P and so Q > 0, 
for all values of the displacements h and k. In both these cases Q ≠ 0 
which means the quadratic equation

Q = ah2 + 2bhk + ck2 = 0
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can have no real solution except h = k = 0. This is the case if b2 − ac < 0,  
or equivalently, D = ac − b2 > 0. This is therefore the condition for a 
maximum or a minimum.

Hence the stationary point P = (x0, y0) is

1. A minimum if
fxx(P) > 0, and fyy(P) > 0, and ( ) ( ) ( )2 0xx yy xyf P f P f P− >

2. A maximum if
fxx(P) < 0, and fyy(P) < 0, and ( ) ( ) ( )2 0xx yy xyf P f P f P− >

3. A saddle point if
( ) ( ) ( )2 0xx yy xyf P f P f P− <  (if fxx(P), fyy(P) have opposite signs)

If the second derivatives, fxx, fyy and fxy, are all zero one would 
need to investigate the behavior of the function in more detail to 
correctly identify the type of stationary point.

10.13. DEFINITION OF THE TOTAL DIFFERENTIAL

Given a function f(x, y), its total differential, df, is defined by

 equivalently .x y

f f
df dx dy df f dx f dy

x y
∂ ∂

= + = +
∂ ∂  (10.16)

Since this is a definition it is not necessary to ask what it means   
we shall simply show that it is useful.

Example 10.14 Find the total differential of the function  
f(x, y) = xy3.

We calculate fx = y3 and fy = 3xy2. So from the definition (10.16) 
we have

df = y3dx + 3xy2dy.
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10.14. EXACT DIFFERENTIALS

Now consider the converse: given a(x, y) and b(x, y) can we write 
adx + bdy = df for some f ? If such an f exists we say that adx + bdy is 
an exact differential (it is also called a perfect differential). It is often 
useful to know if adx + bdy is an exact differential, because, if it is, 
then there exists a curve f(x, y) = constant, such that (a, b) is normal 
to the curve at each point. As an example, let a = 3x2y + 1/y and  
b = x3 − x/y2; does there exist an f such that

df = (3x2y + 1/y)dx + (x3 − x/y2)dy?

If you are good at this sort of thing you can guess (with the help 
of Exercise 10.19) that f = x3y + x/y will do. Can we find a more 
mechanical method?

Suppose we can find an f such that

df = adx + bdy.

But then, given this f, we have

df = fxdx + fydy,

by equation (10.16). Thus, if both are to be valid, a = fx, b = fy. Hence, 
ay = fxy, bx = fyx. Since fxy = fyx, this means that if f exists then

ay = bx.

Although we shall not prove it, this is in fact a necessary and suf-
ficient condition for the differential to be exact.

Exercise 10.19 Find the total differential of

(i) f(x, y) = x3y + x/y,

(ii) f(u, v) = u2/v.
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A differential adx + bdy is said to be inexact if this is not true, 
i.e. there exists no function f(x, y) with this differential. For example, 
2ydx + 3xdy is an inexact differential. If it were an exact differential 
there would be some function f(x, y) whose partial derivatives are 
∂f/∂x = 2y and ∂f/∂y = 3x. But we can integrate each of these to find 
f(x, y). If we integrate the first with respect to x we get f(x, y) = 2xy + 
g(y), where g(y) is some function of y only; if we integrate the second 
with respect to y we get f(x, y) = 3xy + h(x), where h(x) is some func-
tion of x only. These two are inconsistent (for any choice of g(y) and 
h(x)); therefore no such f(x, y) exists. You can prove to yourself that 
this differential does not meet the criterion above (i.e. that ay ≠ bx).  
The difference between exact and inexact differentials is important 
in several areas of physics, most notably thermodynamics.

Example 10.15 Suppose a = (3x2y + 1/y) and b = (x3 − x/y2). 
Show that adx + bdy is indeed an exact differential.

We check if ay=bx. We have ay = 3x2 − 1/y2, bx = 3x2 − 1/y2 = ay, 
so adx + bdy is an exact differential.

Exercise 10.20 If a = x, b = xy, show that adx + bdy is not an 
exact differential.

Exercise 10.21 If a = ln(yx3/2) and b = x/y, show that adx + bdy is 
an exact differential. (This arises in thermodynamics, with, in the 
standard thermodynamic notation, x = T, y = V, a = S and b = P.)

10.15. THE CHAIN RULE

Recall (Section 1.3) the rule for differentiating a “function of a 
function” of a single variable: given f(u) and u = g(x) we find df/dx 
by the chain rule:

 .
df df du
dx du dx

=   (10.17)
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Now we consider the case for a function of many variables. 
Given f(u, v) and u = u(x, y), v = v(x, y) we find ∂f/∂x and ∂f/∂y by 
the chain rule:

 ,
f f fu v
x u x v x
∂ ∂ ∂∂ ∂

= +
∂ ∂ ∂ ∂ ∂

  (10.18)

 .
f f fu v
y u y v y
∂ ∂ ∂∂ ∂

= +
∂ ∂ ∂ ∂ ∂

  (10.19)

(You can remember this by thinking of it as applying equation 
(10.17) to each variable in turn and summing the results.) Note that, 
for example, in equation (10.18), ∂f/∂x is found keeping y constant 
(so f is considered as a function of x and y) and ∂f/∂u is found keep-
ing v constant (so f is considered as a function of u and v).

Example 10.16 Given f(u, v) with u = xy and v = (x − y) find fx 
and fy in terms of fu and fv.

By the chain rule we have

.
f f fu v
x u x v x
∂ ∂ ∂∂ ∂

= +
∂ ∂ ∂ ∂ ∂

However

and 1, so .
f f fu v

y y
x x x u v

∂ ∂ ∂∂ ∂
= = = +

∂ ∂ ∂ ∂ ∂
Similarly

, and 1, so .
f f fu v

x x
y y y u v

∂ ∂ ∂∂ ∂
= = − = −

∂ ∂ ∂ ∂ ∂

Example 10.17 Given f(x, y) with x = r cos(q) and y = r sin(q) 
find fr in terms of fx and fy.

By the chain rule we have

.
yf f fx

r x r y r
∂∂ ∂ ∂∂

= +
∂ ∂ ∂ ∂ ∂
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Exercise 10.22 Complete Example 10.17 by finding fq in terms 
of fx and fy. Hence obtain expressions for fx and fy in terms of fr 
and fq . Deduce that if f = rq then

( ) ( ) ( )1 21 2 2cos sin cos , where .x

yx x
f r x y

r r r
q q q −  = − = − = + 

 

10.16. CONSISTENCY WITH THE CHAIN RULE

Given f(u, v) and u = u(x,y), v = v(x,y) we can form the following 
differentials:

 df = fudu + fvdv   (10.20)
 du = uxdx + uydy   (10.21)
 dv = vxdx + vydy.   (10.22)

Substituting equations (10.21) and (10.22) into equation (10.20) 
we obtain

df = fu(uxdx + uydy) + fv(vxdx + vydy) 
= (fuux + fvvx)dx + (fuuy + fvvy) dy.

But equation (10.16) says

df = fxdx + fydy.

But

( ) ( )cos , and sin ,
yx

r r
q q

∂∂
= =

∂ ∂
and so we have that

( ) ( )cos sin .
f f f
r x y

q q
∂ ∂ ∂

= +
∂ ∂ ∂

You will find that the chain rule is important wherever it is neces-
sary to use different coordinate systems (e.g. Cartesians and polars).
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Example 10.18 Given f(x, v) and v = v(x, y) find (∂f/∂x)y in 
terms of (∂f/∂x)v and (∂f/∂v)x.

Given f(x, v) we would get f(x, y) by substituting for v(x, y). For 
differentials, the strategy is the same: compute df in terms of 
dx and dy by substituting for dv. So, first we compute df (x, v):

df = (fx)vdx + (fv)xdv.

Next, compute dv:

dv = (vx)ydx + (vy)xdy.

Substituting for dv

df = (fx)vdx + (fv)x[(vx)ydx + (vy)xdy]
= [(fx)v + (fv)x(vx)y]dx + (fv)x(vy)xdy.

Write df in the form “(· · ·)dx + (· · ·)dy”:

df = (fx)ydx + (fy)xdy.

Finally, compare coefficients of dx:

(fx)y = (fx)vdx + (fv)x(vx)y.

i.e.

.
yy v x

f f f v
x x v x
∂ ∂ ∂ ∂       = +       ∂ ∂ ∂ ∂      

Therefore, comparing coefficients of dx and dy in the last two 
equations,

 fx = fuux + fvvx and fy = fuuy + fvvy   (10.23)

which are exactly the chain rule equations (10.18) and (10.19).
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If we are given that x is some function of a variable u, x = x(u), 
and also u as some function of x, u = u(x), then we can find dx/du if 
we know du/dx. In fact

1

.
dx du
du dx

−
 =  
 

Suppose now that we are given x = x(u, v) and y = y(u, v). Then we 
must have some inverse relation u = u(x, y) and v = v(x, y). How can we 
find (∂x/∂u)v if we know (∂u/∂x)y, (∂v/∂x)y, (∂u/∂y)x and (∂v/∂y)x? The 
next exercise shows how. (The answer is not ( ) ( ) 1

v y
x u u x −∂ ∂ = ∂ ∂  

because different variables are being held constant on the two sides.)

Exercise 10.23 Suppose we are given a function f(x, y) with  
x = x(t) and y = y(t). Show that

,x y

dydx
df f f dt

dt dt
 = + 
 

and hence that

.x y

dydf dx
f f

dt dt dt
= +

Verify that this result can be obtained directly from the chain rule.

Exercise 10.24 If x = x(u, v), y = y(u, v) and the inverse relations 
u = u(x, y) and v = v(x, y) are given, write down the definitions of 
the differentials du, dv and dx. Using the fact that also

dx = 1 · dx + 0 · dy,

show that

,u y
v

y

x u
x

u
= −

and that

xu = vy/(uxvy − uyvx).

This last relation gives us the required expression for (∂x/∂u)v.
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10.17. EXERCISES

1. By explicit calculation verify that if f(x, y) = ln(cos(x/y)) 

then 
2 2

.
f f

x y y x
∂ ∂

=
∂ ∂ ∂ ∂

2. Write down the chain rule for the partial derivative ∂f/∂u of 
a function f(u, v) in terms of ∂f/∂x and ∂f/∂y where  
x = x(u, v) and y = y(u, v). If f(x, y) = (ln(x))(ln(y)) and  
x = ue−v, y = uv show that ∂f/∂u = (ln(u2v) − v)/u.

3. If f(x, y, z) = z/r2 where r = (x2 + y2 + z2)1/2, what are  

(i) 
f
x
∂
∂

 and (ii) 
f
z
∂
∂

?

Revision Notes

After completing this chapter you should be able to

•	 Calculate the partial derivatives of a given function  
f(x, y,…)

•	 Calculate the partial derivatives with respect to x, y, z of 
a function f(r) where r = (x2 + y2 + z2)1/2

•	 Differentiate an integral w.r.t. a parameter

•	 Calculate a finite number of terms of the Taylor series of 
a function of several variables

•	 Calculate the stationary points of a given function and 
determine whether they are maxima, minima or saddle 
points

•	 Calculate the total differential of a given function

•	 Determine whether a given expression is an exact 
differential

•	 Use the chain rule to relate partial derivatives with 
respect to different coordinates
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4. Let r2 = x2 + y2 + z2; find 
r
x
∂
∂

 and 
1

( )
x r
∂
∂

, and show that

2 2

2 3 5

1 1 3
.

x
x r r r
∂   = − + ∂  

5. Let r2 = x2 + y2 + z2; if f(r) is a function of r only show that
2 22 3

2 2 2 3

1
and

f df f d f df dfx x x
x dr r x r dr r dr r dr
∂ ∂

= = + −
∂ ∂

 and 
2 1xyf dfd
x y r dr r dr
∂  =  ∂ ∂  

.

6. Let f(x, y) = xy2 sin(y/x); show that 3
f f

x y f
x y
∂ ∂

+ =
∂ ∂

.

7. Let r = (x2 + y2 + z2)1/2; show that 

( ) n nx y z r nr
dx dy dz
∂ ∂ ∂
+ + =  for any n ≠ 0.

8. Let r = (x2 + y2 + z2)1/2 and f = 1/r. Find 
f
x
∂
∂

 , write down 

expressions for 
f
y
∂
∂

 and 
f
z
∂
∂

 and hence show that f satisfies

.
f f f

x y z f
x y z
∂ ∂ ∂

+ + = −
∂ ∂ ∂

9. Let u = x2 − y2 and v = y. For a function f(x, y) find 
f
x
∂
∂

 and f
y
∂
∂

 in terms of f
u
∂
∂

 and f
v
∂
∂

. Hence find the 

general solution of the partial differential equation 

2
f f

y x xy
x y
∂ ∂

+ =
∂ ∂

.

10. Show that

( ) ( ) ( )2 2 2

0 0
exp exp 0 ;

d
x dx x x dx

d

∞ ∞
− −λ = −λ λ>∫ ∫l
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 hence (or otherwise) evaluate 
22

0

xx e dx
∞ −∫  given that

2

0
.

2
xe dx

∞ − =∫
p

11. Evaluate 
2

20

x td e
dx

dt x

−∞

∫  (t > 0)given that 
2

0 2
xe dx

∞ − =∫
p

.

12. Find the Taylor series of f(x, y) = x/y about the point  
x = 1, y = 1 up to and including terms of the third order (i.e. 
as a cubic polynomial).

13. Given that f(x, y) is stationary at the origin and its second 
derivatives are fxx = 2, fyy = −2, fxy = 3, determine the nature 
of the stationary point.

14. Write down the conditions for a(x, y)dx+b(x, y)dy to be a 
perfect differential, and deduce that

2

1 x
dx dy

y y
−

 is a perfect differential.

15. For what value of n is the expression xn[(6x5 + 3y2)dx − 2xydy] a 
perfect differential?

16. Is 
2 2

2 32
(1 )x y x yx x

e dx e dy
y y

+ −  a perfect differential? (Show 

your reasoning.)

17. Write down the condition for p(x, y)dx + q(x, y)dy to be a 
perfect differential. Is

2

2 2 2

2x x
dx dy

y x y x y
−

+ +

 a perfect differential?
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10.18. PROBLEMS

1. Show that if x = r cos(q) and y = r sin(q) then r x
x r
∂

=
∂

 and 
yr

y r
∂

=
∂

. Suppose now that the function g(r, q) has the 

form g(r, q) = f(r) sin(q), where f(r) is a function of r only. 
By writing g(r, q) in the form yF(r), where F(r) = f(r)/r, or 
otherwise, show that

2

(i) , (ii)
g xy g ydF dF

F
x r dr y r dr
∂ ∂

= = +
∂ ∂

 and 
2 2 2

2 2 2

3
(iii)

g g d F dF
y

x y dr r dr
∂ ∂  

+ = + ∂ ∂  

 Hence prove that if g(r, q) satisfies the partial differential 

equation 
2 2

2 2 0
g g

x y
∂ ∂

+ =
∂ ∂

, then f(r) = Ar + B/r where A and 

B are constants.

2. Given u(r, q) with x = r cos(q), y = r sin(q), show that

( ) ( )

( ) ( )

sin
cos ,

cos
sin .

u u u
x r r
u u u
y r r

q
q

q
q

q
q

∂ ∂ ∂
= −

∂ ∂ ∂
∂ ∂ ∂

= +
∂ ∂ ∂

 Now consider f(r, q) with x = r cos(q), y = r sin(q). By set-

ting 
f

u
x
∂

=
∂

 use the above results to express 
2

2

f
x

∂
∂

 in terms 

of 
2 2 2

2 2, , ,
f f f f

r r rq q
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

 and 
f
q
∂
∂

.

 Obtain the corresponding expression for 
2

2

f
y

∂
∂

 and show 
that

2 2 2 2

2 2 2 2

1
.

f f f f f
x y r r r q

∂ ∂ ∂ ∂ ∂
+ = + +

∂ ∂ ∂ ∂ ∂
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3. Find the stationary point of the function

f(x, y) = x4 + 2x2 + 3xy + 3y.

 Write down the Taylor series about the stationary point 
up to terms of second order, and hence (or otherwise) 
show that this point is neither a maximum nor a mini-
mum.

4. (i)  Show that the quadratic form ax2 + 2bxy + cy2 is positive 
for all x, y ≠ (0, 0) if a > 0 and ac − b2 > 0.

 (ii) Show that the function

f(x, y) = x4 + 3x2 + 4xy + 2y2 − 4x − 4y + 2

 has a single stationary point at (0, 1) which is a minimum.

 (iii)  Write down the Taylor expansion of f(x, y) about the 
stationary point and hence show that the minimum 
is a global minimum, i.e. f nowhere takes a smaller 
value.

5. Find the stationary points of the function

f(x, y) = x4 − 2x2 + y3 − 3y

 and for each determine whether it is a minimum, maximum 
or saddle point. Suppose the true values of x and y are x = 1,  
y = 1 and that they are measured each with an error of at 
most 10%. What is the corresponding maximum percentage 
error in f? If the true values are x = 2, y = 2 what is the maxi-
mum percentage error in f corresponding to an error of 1% in 
x and y? Briefly explain your result.

6. Find the stationary points of the function

( ) 4 3 25
,

8
f x y x x y xy= + +
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 and determine whether the stationary point not at the ori-
gin is a maximum, minimum or saddle point.

7. Find the stationary point of the function f(x, y) = xy+1/x+1/y, 
(x ≠ 0, y ≠ 0) and determine whether it is a maximum, mini-
mum or saddle point.

8. Obtain the Taylor expansion to second order of the func-

tion f(x, y) = (xy)1/2 about the point x = 1, y = 1. Hence show 

that ( ) ( )1 2 1
2

xy x y< +  near (1, 1).

9. Find the stationary point of the function ln(x) − x/y2 − 2y 
and determine its nature.

10. Show that ( ) 2 2 1
, 3 2 2

2
f x y x xy y x= + + − +  has one station-

ary point. Find the position (x0, y0) of the stationary point 
and show that it is a minimum. Deduce that f(x, y) > 0 for 
all x, y. Show that g(x, y) = exp(a(x + y))f(x, y) has a mini-
mum at (x0, y0) for all values of a. Show further that when a 
≠ 0, g(x, y) has a second stationary point and determine its 
nature.





CHAPTER 11
PARTIAL DIFFERENTIAL 
EQUATIONS

Many situations in physical science are governed by the relations 
involving partial derivatives of an unknown function, hence by  
partial differential equations (PDEs). Examples include the gravita-
tional field of a distribution of mass, the electromagnetic field gener-
ated by a charge distribution, the diffusion of heat in a reactor, the 
probability density of an electron in an atom and the flow of a fluid. 
For example, the rate at which the temperature in a bar is changing 
at any point (partial derivative of temperature with respect to time) 
is related to the spatial gradient of temperature at that point (partial 
derivative with respect to spatial coordinate).

In many real situations the governing partial differential equa-
tions are complicated and cannot be solved using analytical meth-
ods; they must be solved by numerical methods. But in simple cases 
there do exist methods of explicit solution, and these provide insight 
into the behavior of the system and assist the development of physi-
cal intuition. In this and the next chapter we concentrate mainly 
on one particular equation, namely the wave equation in one space 
dimension that governs, for example, the propagation of disturbances 
on strings and in tubes of fluid. We consider two methods of solu-
tion: the general solution involving arbitrary functions introduced 
in Section 11.2 and the sum of separable solutions, involving arbi-
trary coefficients, which is taken up in Section 11.11 and Chapter 12.  
The former is a special feature of the wave equation, the latter a 
rather general approach for linear equations.



380 • Mathematical Physics

11.1. EXAMPLES FROM PHYSICS

Let y(x, t) = sin(x + ct), with c a constant, and let u = x + ct. 
Then, writing yx for ∂y/∂x etc., we have, by the chain rule,

( ) ( )∂ ∂
= × = × = +
∂ ∂

cos 1 cos .x

y u
y u x ct

u x

Similarly yt = c cos(x + ct) and

( ) ( )= − + = − +2sin , sin .xx tty x ct y c x ct

Therefore

=2

1
tt xxy y

c

or

 

∂ ∂
=

∂ ∂

2 2

2 2 2

1
.

y y
c t x  

(11.1)

We say that the function y(x, t) = sin(x + ct) satisfies the partial 
differential equation (11.1). But this may not be − in fact, is not − the 
only solution. To find other solutions of equation (11.1) we must per-
form a reverse process: start from equation (11.1) and find the pos-
sible forms for y(x, t). In practice, solutions are usually required to 
satisfy further subsidiary conditions (boundary conditions or initial 
conditions, or a combination), as will be explained later.

Equation (11.1) is called the wave equation (in one space dimen-
sion). It describes the propagation, for example, of a wave on a uni-
form string under tension (y is the transverse displacement of the 
string from its equilibrium position, x is the distance along the string 
and t the time; compare Figure 11.1) or of a sound wave in a uniform 
tube (y is the pressure in the tube) etc. The constant c is the speed 
of the wave. In the case of the string, the physical interpretation of 
this equation is that the transverse acceleration (perpendicular to the 
string) of an element of string, ∂2y/∂t2, is a result of the net tension 
acting on the element arising from the distortion of the string ∂2y/∂x2.

The following are four more examples of partial differential 
equations in physics.
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The “wave equation” for f = f(x, y, z, t) in three space dimensions:

 

2 2 2 2

2 2 2 2 2

1
.

x y z c t
f f f f∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂  
(11.2)

Laplace’s equation:

 

2 2 2

2 2 2 0,
x y z
f f f∂ ∂ ∂
+ + =

∂ ∂ ∂  
(11.3)

where f = f(x, y, z) might be, for example, the electrostatic poten-
tial, or the gravitational potential in empty space, or the velocity 
potential for an inviscid fluid.

The “diffusion equation”:

 

∂ ∂
=

∂ ∂

2

2

1
,

y y
x D t  

(11.4)

where y = y(x,t), D = constant, describing, for example, the diffusion 
of heat in a bar (y is then the temperature).

Schrödinger’s equation:

 

2

2 i
x t
y y∂ ∂
= −

∂ ∂  
(11.5)

for the wave function y of a free particle.

These equations are linear (i.e. the unknown function and its 
derivatives occur only linearly) and homogeneous (there is no term 
involving only the independent variables and not the unknown func-
tion). They are also of second order (i.e. second derivatives occur but 
not higher ones). A method of solution will be presented in section 
11.11. However, in Sections 11.2–11.9 we explore an exceptional 
feature of the wave equation (11.1): the existence of an explicit form 
for the general solution.

Exercise 11.1 For any one of the equations (11.1)–(11.5), show 
by substitution that if two functions, g and h say, of the indepen-
dent variables are known to be solutions, then Ag + Bh is also a 
solution where A, B are arbitrary constants. (This is true because 
the equations are linear and homogeneous.)
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Example 11.1 Find the general solution for h(x,y), a function 
of x and y, of the equation ∂h/∂x = 0.

The obvious approach is to integrate. If

∂
=

∂
0

h
x

then h is a constant as far as differentiation with respect to x is 
concerned, i.e. h is an unknown function of y only, say g(y) and 
so h(x,y) = g(y). It is independent of x. Differentiate g(y) with 
respect to x to check, remembering that partial differentiation 
with respect to one variable means that the others are held 
constant, and so

( )∂∂
= =

∂ ∂
0.

g yh
x x

This is the general solution. Note that it contains one arbitrary 
function (of one variable). This is an obvious extension of the 
corresponding result for a function of a single variable, namely 
that the solution to a first order ordinary differential equation 
contains one arbitrary constant. For example, if the function of 
a single variable h(x) satisfies the ordinary differential equation 
dh/dx = 0, then f (x) is independent of x, i.e. f (x) = c, a constant.

x

y(
x,

 t)

FIGURE 11.1: Wave on a string at some instant of time t.

Exercise 11.2 Write down an extension of the above example to 
a function of three variables h(x, y, z).
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11.2.  GENERAL SOLUTION OF THE WAVE 
EQUATION

The wave equation in one space dimension for the unknown 
function y(x, t) is

 

∂ ∂
=

∂ ∂

2 2

2 2 2

1
.

y y
x c t  

(11.6)

For a concrete picture we shall think of y(x, t) as the transverse 
displacement of a uniform stretched string at position x at time t. 
(The string is undergoing transverse motion of small amplitude in a 
horizontal plane, so gravitys can be neglected.)

We now come to a fundamental result. Take any functions f (x), 
g(x) of a single variable (with the property that they vary smoothly 
enough to have second derivatives at each point). A solution of equa-
tion (11.6) is

 y(x,t) = f (x − ct) + g(x + ct) (11.7)

Proof: We calculate fxx and ftt and show they satisfy equation (11.6). 
Let u = x − ct, so f = f(u(x, t)), i.e. f(x − ct) is a function of a function  
u = (x − ct). Differentiate f (u(x, t)) by the chain rule:

∂ ∂
= =

∂ ∂
f df dfu
x du x du

since ∂u/∂x = 1. Note that we write df/du (not curly ∂) because f is a 
function of a single variable, u. Differentiate again to get fxx,

∂ ∂ = = ∂ ∂ 

2 2

2 2 .
f df d fd u

x du du x du

Using the fact that ∂u/∂t = −c,

( )∂ ∂
= = −

∂ ∂
,

f df dfu
c

t du t du
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and so
∂ ∂ = − = ∂ ∂ 

2 2
2

2 2 .
f df d fd u

c c
t du du t du

Hence fxx = (1/c2)ftt, so y = f (u); i.e. y = f (x − ct) satisfies equa-
tion (11.6).

Exercise 11.3 Complete the proof by showing also that g(x + ct) 
satisfies equation (11.6).

In fact, equation (11.7) is the general solution of equation (11.6); 
i.e. every solution can be written in the form equation (11.7) for 
some functions f and g. This is an important result. (For a proof, see 
Section 11.3.)

Example 11.2 Is the function y(x, t) = x2 − c2t2 a solution of the 
wave equation?

The function can be written as (x − ct)(x + ct) which is not 
of the form “a function of (x − ct) plus a function of (x + ct).” 
Therefore this is not a solution of the wave equation. (Of 
course, this can be checked by direct substitution, but this 
usually requires more effort.)

Exercise 11.5 Which of the following are not solutions of the 
wave equation?

(i) (x − ct)2,

(ii) xt,

(iii) x2 + c2t2,

(iv) sin(x) sin(ct).

Exercise 11.4 If f (u) = u2, g(u) = cos(u), what does equation 
(11.7) give for y(x, t)?

The function y = f(x − ct), where c is a positive constant, rep-
resents a wave. (The shape of this wave will depend on the choice 
of the function f, which can be anything, not just a sine or cosine 
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(Exercise 11.5).) The quantity x − ct is the phase of the wave at posi-
tion x and time t.

In which direction does the wave y = f(x − ct) move? To answer 
this consider the point with zero phase at any time. This is the point 
x − ct = 0. So at t = 0 the point with zero phase is at the origin x = 0. 
At later times (t > 0) it is at x = ct along the positive x-axis. There-
fore the wave moves to the right with wavespeed (or phase speed) c.  
(The choice of zero phase is merely for convenience; any other 
choice gives the same result.)

Another way to remember the direction of propagation is that 
for the crest to stay at the constant height y = f (x0) (i.e. to move with 
the wave) as t increases, x must increase so as to keep x − ct constant: 
thus the wave moves to the right with speed c. 

x

x

y(
x,

 t)
y(

x,
 t)

FIGURE 11.2: A wave moving to the right. The circles in the top figure indicate the displace-
ment of a point at x = 1 with time t: y(1, t). The circles in the bottom figure indicate the  
movement with time of a point of constant phase.
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The phase speed and direction of propagation define the phase 
velocity.

Exercise 11.6 What is the phase velocity of the wave  
y = g(x + ct)?

The phase speed, c, of the wave (to the left or right) should not 
be confused with the transverse (“up and down”) velocity, ∂y/∂t, of a 
point of the string. If the displacement of the string is given by equa-
tion (11.7), the transverse velocity of a point of the string is

( ) ( ) ( ) ( )∂ ∂ ′ ′= − + + = − − + +  ∂ ∂
,

y
f x ct g x ct cf x ct cg x ct

t t

where the prime denotes differentiation of a function w.r.t. its argu-
ment, e.g.

( ) ( )
= −

′ − = .
u x ct

df u
f x ct

du

Exercise 11.7 What is the transverse velocity of the string in 
exercise 11.4 at the point x = 5p/8, at time t = 5p/8c?

11.3. DERIVATION OF THE GENERAL SOLUTION

To derive the general solution we make a transformation from 
(x, t) to new variables (u, v) defined by u = x − ct, v = x + ct. We have, 
by the chain rule,

∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂
= + = + = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
, since 1and 1.

y y y y yu v u v
x u x v x u v x x

Hence
∂ ∂ ∂ = + ∂ ∂ ∂ 

y
y

x u v

and

∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂     = + = + + = + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

2 2 2 2

2 2 22 .
y y y y y

y
x u v x u v u v u u v v
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Exercise 11.8 Show similarly that

 ∂ ∂ ∂ ∂
= − + ∂ ∂ ∂ ∂ ∂ 

2 2 2 2
2

2 2 22 .
y y y y

c
t u u v v

Putting these together, the wave equation (11.6) becomes 

+ + = − +2 2 .uu uv vv uu uv vuy y y y y y

Now we rearrange to see that

∂ ∂
= =

∂ ∂ ∂ ∂

2 2

4 0, or 0.
y y

u v u v

This is now in a form which can be solved. We can write this as

∂∂   = ∂ ∂ 
0.

y
u v

This implies that ∂y/∂v is independent of u, i.e. an (arbitrary) 
function of v only:

( )∂
=

∂
,

y
h v

v

where h is an arbitrary function of v. Integrating this equation gives

y = ∫ h(v) dv + f (u),

where f(u) is independent of v, i.e. a function of u only. Since the 
integral of an arbitrary function is also an arbitrary function, we can 
write this as

y = g(v) + f (u)

where g and f are both arbitrary functions. This is the general solu-
tion – it involves two arbitrary functions. (Compare second order 
ordinary differential equations, where the general solution involves 
two arbitrary constants.) In terms of x and t we have

y(x, t) = f(x − ct) + g(x + ct)

which is equation (11.7).



388 • Mathematical Physics

11.4. A STRING INITIALLY AT REST

In applications, the functions f and g in the general solution 
(Equation 11.7) are determined by the way in which the wave motion 
is set up, i.e. through given conditions at some specified time, often 
t = 0.

Example 11.3 Find the solution of the wave equation for the 
displacement of a string y(x, t), given that

( ) ( ) ( )∂
= =

∂
,0 sin and ,0 0

y
y x x x

t

i.e. the string is initially at rest.

Starting from the general solution for the displacement, the 
general solution is

 y(x, t) = f(x − ct) + g(x + ct). (11.8)

To impose the second initial condition we need ∂y/∂t:

 
( ) ( )∂
′ ′= − − + +

∂
.

y
cf x ct cg x ct

t  
(11.9)

Now impose the initial conditions on y and ∂y/∂t. We are given 
y = sin(x) and ∂y/∂t = 0 initially (the string is at rest), and so

 y(x, 0) = f(x) + g(x) = sin(x) (11.10)

and

 
( ) ( ) ( )∂

′ ′= − + =
∂

,0 0.
y

x cf x cg x
t  

(11.11)

Thus we have two simultaneous equations for f and g, equations 
(11.10) and (11.11). If we now integrate equation (11.11) we 
obtain

 −f(x) + g(x) = k, k a constant. (11.12)
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For a string released from rest (and only in this case) the solu-
tion can be interpreted graphically as follows: the initial configura-

tion y = h(x) (in this case sin(x)) is made up of two waves: ( )1
2

h x  

moving to the right and ( )1
2

h x  moving to the left. These combine to 

give the solution

( ) ( )= − + +
1 1
2 2

y h x ct h x ct

for a string initially at rest in the configuration y = h(x).

If we add this to equation (11.10) we find

2g(x) = k + sin(x),

and so

( ) ( )( )= +
1

sin .
2

g x x k

And from equation (11.12),

( ) ( )( )= −
1

sin .
2

f x x k

These are the solutions for f and g. Hence, from f (x) we get  
f (x − ct) by substitution of x − ct for x. Similarly for g(x). Note 
that k cancels, and so we arrive at

( ) ( ) ( ) ( ) ( )= − + + = − + +
1 1

, sin sin .
2 2

y x t f x ct g x ct x ct x ct

Exercise 11.9

(i) Repeat the working of Example 11.3 to find the solution of 
the wave equation for the displacement of a string, y(x, t), 
released from rest under the initial conditions

( ) ( )− ∂
= =

∂
2

,0 , ,0 0.x y
y x e x

t

(ii) Interpret the solution as was done for Example 11.3 above 
(see Figure 11.3).
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y(x, t)

t

x

FIGURE 11.3: Motion of a string released from rest, with an initially Gaussian displacement 
y(x, 0) = exp(−x2). As time increases (from back to front in the figure), the displacement splits 
into two oppositely moving parts (Exercise 11.9).

Example 11.4 An infinite string is released from rest at time  
t = 0 with the displacement

( )
+ − ≤ ≤

= − ≤ ≤



0
,0 0

0 otherwise

x L L x

y x L x x L

where L is a given constant. By using the graphical 
interpretation described above draw a series of figures to show 
the displacement of the string at times t < L/2c, L/2c < t < L/c 
and t > L/c (where c is the wavespeed).

The string is released from rest so can be considered as two 
equal parts moving to the left and right. The sum of these parts 
gives the shape of the wave (Figure 11.4).

(a) (b) (c) (d)

FIGURE 11.4: Displacement of string released from rest with an intially triangular displacement. 
The sequence (a)–(d) shows the evolution with increasing time. (a) At t = 0 the two waves overlap 
completely. (b) At 0 < t < L/(2c) the two waves are mostly overlapping. (c) At L/(2c) < t < L/c the 
two waves are only partially overlapping. (d) At t > L/c the two waves have separated completely.
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Example 11.5 An infinite undisplaced string is given an initial 
transverse velocity

( ) ( )∂
=

∂
,0 sin .

y
x x

t

Find its subsequent displacement.

For an infinite string we start from the general solution for the 
displacement and transverse velocity which is

 y(x, t) = f(x − ct) + g(x + ct) (11.13)

and

 
( ) ( )∂
′ ′= − − + +

∂
.

y
cf x ct cg x ct

t  (11.14)

Exercise 11.10 An infinite string is released from rest at time  
t = 0 with the displacement

( )
,

,0 ,
0 otherwise
a L x L

y x
− < <

= 


where L and a are given constants. By using the graphical inter-
pretation above draw a series of figures to illustrate the displace-
ment of the string at times t < L/2c, L/2c < t < L/c, t > L/c, where 
c is the wavespeed. (Note that this is an idealized example: the 
string is displaced to a height a between two end-points where it 
is fixed (so has zero height). But a real string cannot be discon-
tinuous at the points x = ±L. The picture therefore approximates 
a string that has been given a constant displacement along almost 
the whole of its length 2L.)

11.5. A STRING GIVEN AN INITIAL VELOCITY

The graphical method discussed above works only for strings 
released from rest. In this section and the next (11.6) we give exam-
ples of the general method for strings with a non-zero initial velocity.
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Write down the initial conditions: at t = 0:

 y(x, 0) = 0 (11.15)

and

 
( ) ( )∂

=
∂

,0 sin .
y

x x
t  

(11.16)

Putting t = 0 in equation (11.13) and using equation (11.15)

 f(x) + g(x) = 0 or f = −g (11.17)

and putting t = 0 in equation (11.14) and using equation (11.16) 
gives

−cf ′(x) + cg′(x) = sin(x).

Integrating both sides (with respect to x):

− cf(x) + cg(x) = −cos(x),

and since f = −g in equation (11.17) we have

2cg(x) = −cos(x).

So

( ) ( ) ( )1
cos ,

2
f x g x x

c
= − =

and hence

( ) ( ) ( ) ( ) ( )1 1
, cos cos .

2 2
y x t f x ct g x ct x ct x ct

c c
= − + + = − − +

If we use the rule that

( ) ( )cos cos 2sin sin
2 2

A B A B
A B

+ −   − = −    
   

with A = x − ct and B = x + ct then the cosine terms can be 
combined in this solution to give

( ) ( ) ( )1
, sin sin .y x t x ct

c
=

The initial conditions therefore generate a standing wave 
pattern.
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Exercise 11.11 An infinite string is given an initial displacement 
y(x, 0) = tan−1 (x) and an initial velocity yt(x, 0) = c(1+x2)−1 (with  
c a constant). Find the subsequent displacement y(x, t).

Example 11.6 Suppose that an infinite string is given the 
initial displacement y(x, 0) = q(x) and transverse velocity  
yt(x, 0) = p(x), with q and p given functions. Find the subsequent 
displacement of the string.

Since this is an infinite string, start from the general solution of 
the wave equation:

y(x, t) = f (x − ct) + g(x + ct),

with

( ) ( ).y
cf x ct cg x ct

t
∂

′ ′= − − + +
∂

Write down the initial conditions. These will determine f and g, 
and so at t = 0

y(x, 0) = q(x) and yt(x, 0) = p(x).

Put t = 0 in the general solution and use the initial conditions to 
give us two equations for f and g:

f(x) + g(x) = q(x) and − cf′(x) + cg′(x) = p(x).

Integrating the second of these gives

( ) ( ) ( )
0

1
,

x

x
f x g x p x dx

c
′ ′− + = ∫

11.6.  A FORMULA FOR GENERAL INITIAL 
CONDITIONS

In this section, we give a general formula for the propagation of 
a wave on an infinite string from arbitrary starting conditions. It is 
more important that you understand the method than memorize the 
general formula.
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The solution (11.18) for the motion of an infinite string under 
any initial conditions is sometimes called d’Alembert’s formula. Note 
that the arbitrary constant x0 has canceled out. Any particular prob-
lem can now be solved by substituting for the given p(x) and q(x).

where x0 is arbitrary and we have omitted an arbitrary constant 
of integration (since it will cancel as in Example 11.3). We 
have relabeled the integration variable on the right to avoid 
confusing it with the upper limit, which we now want to call x. 
Solving for g using f + g = q:

( ) ( ) ( )
0

1 1
,

2 2

x

x
g x p x dx q x

c
′ ′= +∫

and hence

( ) ( ) ( )
0

1 1
.

2 2

x

x
f x q x p x dx

c
′ ′= − ∫

Finally, substitute for f and g in the general solution and we 
have that

( ) ( ) ( ) ( ) ( )
0 0

1 1 1 1
, .

2 2 2 2

x ct x ct

x x
y x t q x ct p x dx q x ct p x dx

c c

− +
′ ′ ′ ′= − − + + +∫ ∫

We can combine these integrals using the fact that

,
c b c

a a b
f dx f dx f dx− =∫ ∫ ∫

and so

( ) ( ) ( ) ( )
+

−
′ ′= − + + +   ∫

1 1
, .

2 2

x ct

x ct
y x t q x ct q x ct p x dx

c  
(11.8)

Example 11.7 Let y(x, 0) = sin(kx), with k a constant, and

( ),0 0.
y

x
t
∂

=
∂

Use equation (11.18) to find y(x, t).
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Here p(x) = 0, so the integral term in equation (11.18) is equal 
to 0. Inserting q(x) = sin(kx) we get

( ) ( ) ( )1 1
, sin sin .

2 2
y x t k x ct k x ct= − + +      

as in example 11.3.

Example 11.8 Let y(x, 0) =0 and

( ) ( ),0 sin .
y

x x
t
∂

=
∂

Use equation (11.18) to find y(x, t).

Here q = 0, p = sin(x), so

( ) ( ) ( ) ( )1 1
, sin cos cos .

2 2

x ct

x ct
y x t x dx x ct x ct

c c

+

−
′ ′= = + − −  ∫

Exercise 11.12 Solve Exercise 11.11 using the general formula 
(Equation 11.18) and hence check your solution.

11.7. SEMI-INFINITE STRING

Take an infinite string and fix the point at x = 0. To obey this 
condition the general solution must satisfy

y(0, t) = f(−ct) + g(ct) = 0

for all t. This implies

g(u) = −f (−u).

Thus the general solution must be of the form

y(x, t) = f (x − ct) − f (− (x + ct)).
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(a) (b) (c) (d)

FIGURE 11.5: See Example 11.9. At t = 0, a “top hat” displacement f(u) at x < 0 and its  
counterpart −f(−u). The sequence (a)–(d) shows the evolution of the displacement at times  
t = 0, 1/c, 3/(2c) and 2/c.

Now look at these pictures from the point of view of the semi-
infinite string x > 0: the left-moving wave is reflected at the origin, 
with a change of sign, into a right-moving wave. Effectively, a wave 
coming in from infinity (or at least a long way away) reflects off the 
fixed point at the origin (e.g. a wall) and changes its phase by 180°.

Example 11.9 Sketch this solution for the case

( )
1, 2 1
0, otherwise.

u
f u

− − ≤ ≤ −
= 


See Figure 11.5.

(a) At t = 0, y(x) = f(x) − f(−x). The function −f(−u) is 1 for  
2 ≥ u ≥ 1 and 0 otherwise (f is reflected in u = 0 with a change 
of sign). Thus at t = 0, y(x, 0) = f(x) − f(−x) is the sum of two top 
hat functions.

(b) At t = 1/c, y(x) = f (x − 1) − f (− (x + 1)). To the left of 
the origin, f is non-zero where x−1 lies between −2 and −1, i.e. 
where x lies between −1 and 0. To the right of the origin f is 
reflected with a change of sign.

(c) At t = 3/(2c), y(x) = f (x − 3/2) − f (− (x + 3/2)) On the left f 
is non-zero where (x − 3/2) lies between −2 and −1, hence for 
x between −1/2 and +1/2. Since this is symmetrical about the 
origin, it must lie on top of the right top hat and the two cancel 
giving no net disturbance on the string.

(d) At t = 2/c, y(x) = f(x − 2) − f (− (x + 2)) so f = −1 where x−2 
lies between −2 and −1, hence where x lies between 0 and 1. 
And y is + 1 in the reflected region to the left of the origin.
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11.8. SIMPLE HARMONIC WAVES

Any wave progressing in the +x direction with speed c has the 
form y = f (x − ct). If the function f is such that the shape of the wave 
repeats over a fixed distance (and fixed time) the wave is called a 
harmonic wave. If f has the special form

y = A cos[k(x − ct) + f]

(or y = A sin[k(x − ct) + f]) the wave is called simple harmonic. Let

 w = ck. (11.19)

Then y = A cos[k(x − ct) + f] = A cos[k(ct − x) − f] can be  
written as

 y = A cos(wt − kx − f). (11.20)

This gives us the following quantities (Figure 11.6):

•	 A is the amplitude of the wave,

•	 2p/k is the wavelength,

•	 k is the wavenumber,

•	 w is the frequency,

•	 2p/w is the period,

•	 c = w/k is the phase speed,

•	 (wt − kx − f) is the phase of the wave at t, x).

Exercise 11.13 What is the change of phase of a simple harmonic 
wave on reflection at a fixed boundary? (See Example 11.9.)

11.9. BEATS

Suppose we add two simple harmonic waves on a string with 
slightly different frequencies and equal amplitudes:

 y(x,t) = Acos(wt − kx) + A cos(w′t − k′x) (11.21)



398 • Mathematical Physics

where w′ = w+∆w, k′ = k+∆k with ∆w and ∆k small (i.e. ∆w/w << 1  
and ∆k/k <<  1) and w = ck, w′ = ck′. Let ( ) 2w w w= + ′  be the 
mean frequency and ( )′= + 2k k k  be the mean wavenumber. Also, 
we have

.
ck ck

c
k k k k k
w w w∆ − −′ ′
= = =

∆ − −′ ′

y(
x,

 0
) amplitude

phase

wavelength
x

FIGURE 11.6: Some properties of a harmonic wave pictured at a given time.

FIGURE 11.7: Beats in the sum of two simple harmonic waves of the same amplitude with 
slightly different frequencies. The top curve shows A cos(wt − kx). The second curve shows 
A cos(w′t − k′x). The two curves are overlaid to highlight where they are in phase and out of 
phase, and the fourth curve shows the sum of the two waves.

Using ( ) ( ) a b a ba b − +   + =    
   

cos cos 2cos cos
2 2

, equation 

(11.21) can be rewritten as
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( ) ( ), 2 cos cos .

2 2
k

y x t A t x t kx
w w∆ ∆ = − −    

(11.22)

If we let

( ), 2 cos ,
2 2

k
A x t A t x

w∆ ∆ = −  

then equation (11.22) is

 
( ) ( ) ( ), , cos .y x t A x t t kxw= −

 (11.23)

This is therefore a wave (the carrier wave) with frequency w  

and speed k cw = , with varying amplitude A(x, t). The amplitude 

A(x, t) is itself a wave of large wavelength, 4p/∆k, and low frequency, 
∆w/2, the beat frequency. The beat pattern moves with velocity 
∆w/∆k = c. (See Figures 11.7 and 11.8.)

x
–20 –10 0 10 20

x
–20 –10 0 10 20

x
–20 –10 0 10 20

(a) (b) (c)

FIGURE 11.8: The beat pattern (at t = 0) from the sum of harmonic waves with slightly 
different wavenumbers: y(x, t) = Acos(wt − kx) + B cos(w′t − k′x). (a) Waves with the same  
amplitudes, A = B = 1, and (k′ − k)/k = 0.1, (b) with same amplitudes, A = B = 1 and (k′ − k)/k = 0.05,  
(c) with (k′ − k)/k = 0.1 and A = 0.4 and B = 1.

–|A+B|

–|A–B|

|A–B|

|A+B|

FIGURE 11.9: Beats in the sum of two simple harmonic waves of different amplitudes.
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Exercise 11.14 Let y(x, t)= Acos(wt − kx) + B cos(w′t − k′x)  
(A and B given constants) be the sum of two simple harmonic waves 
of different amplitudes, B ≠ A with w/k = w′/k′ = c. By writing  
A = (A + B)/2 + (A − B)/2 and B = (A + B)/2 − (A − B)/2, show 
that this also gives rise to beats, but of a diminished amplitude 
(compared with the case A = B). See Figure 11.9.

11.10. GROUP VELOCITY

Waves on a string move with the same speed c independent of 
frequency. Waves in other media can move at speeds that differ for 
different frequencies, so c = c(w). Such media are said to be disper-
sive. In a dispersive medium, we have w = c(w)k or, equivalently, 
solving for w, we have w = w(k). Thus, in a dispersive medium, the 
frequency is a function of wavenumber. If the wavespeed depends on 
frequency, we can ask, at what speed does the beat pattern of waves 
at frequencies w and w + ∆w move? The calculation of the previous 
section gives the answer: the beat pattern moves with speed ∆w/∆k.

Consider now a group of waves, with frequencies in the range 
w to w + ∆w. In the limit ∆w → 0 the beat pattern moves with 
speed vg = dw/dk. The speed vg is called the group velocity. The 
group velocity is in general itself a function of frequency and 
gives the speed with which energy is propagated in a dispersive 
medium (Figure 11.10).

Exercise 11.15 Show that the group velocity vg is equal to the 
wave velocity c (for all wavenumbers) if and only if c is a constant, 
i.e. independent of frequency, as in the case of a stretched string.

Exercise 11.16

(i) Show that if the frequency w and wavenumber k of waves 

in a certain medium are related by 21
2

kw= , then the group 
velocity is double the wave velocity.

(ii) What is the relation between w and k if, instead, waves have 
group velocity equal to half the wave velocity?
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Waves for which the group and phase velocities are equal are 
called non-dispersive. In particular, if a wave is non-dispersive then 
its phase speed is constant with frequency (and conversely). The 
group speed provides a useful estimate of the modes (of different 
frequencies) that transfer the most energy.

x

0 5 10 15 20

(a)

x

0 5 10 15 20

(b)

x

0 5 10 15 20

(c)

x

0 5 10 15 20

(d)

FIGURE 11.10: The beat pattern from the sum of harmonic waves with different wavenumbers  
and different phase velocities: y1(x, t) = cos(wt − kx) (top curve) and y2(x, t) = cos(w′t − k′x)  
(second curve). Here v1 = w/k = 5/5 = 1, while v2 = w′/k′ = 6.6/5.5 = 1.2. (a) At time t = 0 the 
two simple waves are in phase, and they are in phase with their sum. (b)–(d) Times t = 2.5, 5 
and 7.5 showing the effect of the different phase speeds of the simple waves on the sum. The 
solid dots represent points of constant phase on each wave (y1, y2 and the carrier wave of their 
sum); these all move with their respective phase velocities. The open circle shows a point of 
constant phase on the envelope; this moves with the group velocity.

Exercise 11.17 For a wave of frequency w, wavenumber k(w) 
propagating in a general medium with wavespeed c(w), show that

1
1 ,

g

dc c
d k vw

 
= −  

 

and hence that the group velocity is respectively greater than the 
wave velocity, equal to it, or smaller, according as the wave veloc-
ity increases with the frequency, is constant (as in the case of a 
stretched string), or decreases as the frequency increases.
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Exercise 11.18 A wave propagates along the x-axis with a fre-
quency given by

w = −k/(k2 + 1).

Determine the minimum frequency with which the wave can 
propagate in

(i) the negative x-direction

(ii) the positive x-direction.

11.11. SEPARATION OF VARIABLES

So far we have considered infinite strings (i.e. strings so long that 
we need not consider what is happening at the ends) and semi-infi-
nite strings, where we need consider only one end. For a finite string 
we have to impose conditions at both ends. This can be quite hard 
to solve if we start from the general solution. We also want to solve 
other equations, which, unlike the wave equation in one dimension, 
do not have an explicit general solution. A method that works for a 
limited but useful class of partial differential equations is separation 
of variables, which we describe in this section.

Now, the possible motions of a stretched string fixed at its end-
points P and Q, say, are identical, in the region between P and Q, 
with the possible motions of an infinite string which happen to have 
nodes (points at which there is no transverse motion) at P and Q. For 
example, in Example 11.3, we saw that ( ) ( )= − + +

1 1
sin sin

2 2
y x ct x ct  is 

a possible solution of the wave equation (11.6). We can use the iden-
tity for sin(A − B) to rewrite this solution as follows:

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( )

1
, sin cos cos sin

2
1

sin cos cos sin
2

sin cos .

y x t x ct x ct

x ct x ct

x ct

= −

+ +

=

This solution has the property that y(0, t) = 0 and y(2p, t) = 0 for 
all t. If we restrict our attention to the region 0 ≤ x ≤ 2p, this solution 
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also represents one possible wave motion on a string of length 2p 
fixed at its ends (so the displacement, y, is constrained to be zero at 
the ends). This leads to two questions:

1. Can other motions of a string fixed at its ends be represented 
in a form like equation (11.11), namely with y(x, t) = (func-
tion of x only) × (function of t only)? This question will be 
answered below.

2. Can all motions of the string be derived from such solutions? 
This question will be answered in Chapter 12.

To find the answer to (1) we take y(x, t) to be of the proposed 
form, substitute in the wave equation, and determine what condi-
tions must be satisfied if y is to be a solution. So, since we want a 
function of x times a function of t, let us write y(x, t) = X(x)T(t) as the 
general form of solution and attempt to determine what functions 
X and T will give a solution of the wave equation. Note that X is a 
function of x only and T a function of t only. A solution of this form 
is said to be separable and the process of seeking a solution in this 
way is referred to as the method of separation of variables. (We are 
separating the time and space parts of the solution.)

It is important to realize that y = X(x)T(t) is a less general solu-
tion than y = f(x−ct)+g(x−ct). This latter class encompasses all sepa-
rable solutions, in addition to all other possible solutions.

We substitute our expression for y(x, t) in the wave equation

 

∂ ∂
=

∂ ∂

2 2

2 2 2

1
.

y y
x c t  (11.24)

Take the left side first. We have

2 2

2 2 ,
y X

T
x x
∂ ∂

=
∂ ∂

since T(t) is constant for partial differentiation with respect to x, and 
similarly for the right hand side

2 2

2 2 .
y d T

X
t t

∂
=

∂ ∂
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Hence, substituting in equation (11.24), we require

 
=

2 2

2 2 2 .
d X X d T

T
dx c dt  

(11.25)

Divide through by y = XT:

 

2 2

2 2 2

1 1
.

d X d T
X dx c T dt

=
 (11.26)

In equation (11.26) we have been able to write our equation 
in a very special form: the left side is a function of x only; the right 
side is a function of t only, not of x. Thus, a function of x on the left 
equals something that is independent of x on the right. The only way 
this can happen is if each side of the equation equals a constant. We 
have the freedom (at the moment) to choose this constant. For the 
applications we shall be making it will turn out that the best choice 
is for this constant to be negative. With hindsight we therefore write 
this separation constant as −a2. (Writing + a2 for the constant would 
lead a to be imaginary; this is not wrong but it is not so convenient.) 
Thus equation (11.4) gives

 

2 2
2 2 2

2 2

1 1
, .

d X d T
c

X dx T dt
a a= − = −

 
(11.27)

Thus we have separated out the x and t parts of the equation. The 
dependence on x and t is sometimes said to be decoupled. Equations 
(11.27) can be solved for X and T; possible solutions are

X = cos(ax) or sin(ax),

and

T = cos(act) or sin(act).

Since each of these four solutions are possible, we make linear 
combinations to form a solution:

 y(x, t) = [a cos(ax) + b sin(ax)] [c cos(act) + d sin(act)]
 = Asin(ax + y) sin(act + f). (11.28)

For the second line we have made use of the fact that
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   Asin(z + f) = A [sin(z) cos(f) + cos(z) sin(f)]
 = (A sin(f)) cos(z) + (A cos(f)) sin(z)

 = a cos(z) + b sin(z).

The two constants on the left side (A, f) are related to the two 
constants on the right side (a and b) by a = A sin(f) and b = A cos(f).

From the second form of equation (11.28) it is clearer that y(x, t)  
involves three independent constants, not four, but the first form 
is often simpler in applications. Note that in a separable solution y 
varies in time in the same way (e.g. like sin(ct + f)) at all points, x.  
Separable solutions are also referred to as normal modes of the 
string. Physically, these solutions are standing waves.

Exercise 11.19 Using the first form of the separable solutions 
above, show that this is consistent with the solution to Example 11.3.

Exercise 11.20 What are all the separable solutions of the wave 
equation obtained by taking +a2 in equation (11.27)? Hence 
explain why the choice of −a2 is made in applications involving 
the wave equation.

Exercise 11.21 For Laplace’s equation in 2D,

2 2

2 2 0,
x y
f f∂ ∂
+ =

∂ ∂

use the method of separation of variables to find all solutions of 
the form f(x, y) = X(x)Y(y) which vanish on x = 0 (for all y).

Exercise 11.22 Use the method of separation of variables to find 
all solutions of the form y(x, t) = X(x)T(t) of Schrödinger’s equa-
tion

2

2 i
x t
y y∂ ∂
= −

∂ ∂
for which X is real.

Note that most equations do not have separable solutions; i.e. in 
general this method does not work because it cannot lead to an equa-
tion like equation (11.26) in which the variables have been separated! 
But those that do are among the most important in physical science.



406 • Mathematical Physics

11.12. EIGENVALUES

So far we have found separable solutions of the wave equation 
but we have not yet considered boundary conditions (e.g. at the 
fixed ends of the string) or initial conditions (e.g. how the string is 
set vibrating at time t = 0). The former will be considered here, the 
latter in Chapter 12. We shall illustrate the effect of boundary condi-
tions by some examples. The result is always the same: the boundary 
conditions determine the possible values of the separation constant.

Possible values of a separation constant, giving rise to non-
zero solutions satisfying the given boundary conditions, are called 
eigenvalues.

Example 11.10 Find the separable solutions of the wave 
equation on a string of length l subject to the conditions  
y(0, t) = 0, y(l, t) = 0 for all t (i.e. the string is fixed at its end-
points x = 0 and x = l).

First, write down the general form of the separable solutions:

y = A sin(ax + y) sin(act + f).

Next, impose the boundary conditions. For this problem these 
are given at x = 0 and x = l. At x = 0:

y(0, t) = A sin(y) sin(act + f) = 0

for all t. So Asin(y) = 0, hence y = 0 (since A ≠ 0). Similarly, at 
x = l:

y(l, t) = Asin(al)sin(act + f) = 0,

for all t. So it must be that Asin(al) = 0. If

sin(al) = 0

then al is an integer multiple of p, so we can put

a = an = np/l, for n = 1, 2, 3, . . . .
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x

y(
x,

 t)

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 11.11: The first five eigenfunctions from Example 11.10. Bottom to top: n = 1, 2,  
3, 4, 5.

The numbers 2
na  are the eigenvalues of the problem; the cor-

responding solutions for y are called the eigenfunctions of the prob-
lem. So for the example above the eigenvalues are (np/l)2 and the 
eigenfunctions are

Asin(npx/l) sin(npct/l + f),

or, expressed differently,

sin(npx/l)(a cos(npct/l) + b sin(npct/l)).

In the case of the wave equation we also refer to the eigenfunc-
tions as the normal modes of the system and the eigenfrequencies as 
the normal frequencies or harmonics.

These are all the solutions of sin(al) = 0, and we see al must 
be an integer multiple of p. We have found an infinite number 
of separable solutions satisfying the given conditions. The 
separable solutions are

y(x, t) = Asin(anx) sin(anct + f),

where an = np/l for n = 1, 2 . . . . (See Figure 11.11.)
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Exercise 11.24 Find the separable solutions of Laplace’s equa-
tion (in 2D) subject to the conditions f = 0 on x = 0 and x = l, for 
all y. What are the eigenvalues and eigenfunctions?

Exercise 11.23 Find the separable solutions of the wave equa-
tion on a string subject to the conditions y = 0 at x = 0 for all t and 
∂y/∂x = 0 at x = l for all t. What are the eigenvalues and eigenfunc-
tions? What are the normal modes of the string?

Exercise 11.25 Show that for a string with the end at x = 0 fixed 
and the end at x = l free, the wave equation has separable solu-
tions of the form

y(x, t) = sin(wx/c)(Acos(wt) + Bsin(wt))

Find the transverse velocity of the free end of the string at x = l 
corresponding to this solution. If the free end at x = l is driven 
with velocity v0 sin(pt) show that the displacement of the string 
is given by

0 sin( / )
( , ) cos( ).

sin( / )
v

y
p

= −
px cx t pt
pl c

11.13. REFLECTIONS AT A DISCONTINUITY

We now look at two developments of the above theory. The first is 
to waves on a string which consists of two halves with different prop-
erties joined at the origin. The second is to a matter wave, satisfying 
the Schrödinger equation, incident on a potential step. The approach 
to these problems is similar. We consider a wave incident on the join 
in the strings, or the potential step, and determine what fraction of it 
is reflected and what fraction transmitted in order to satisfy certain 
conditions at the join. To solve these problems efficiently it is conve-
nient to represent waves in exponential form. For example, the wave 
Acos(wt − kx) is represented as Re(Aeiwte−ikx). The Re(…) is usually 
omitted, it being understood that the real part is intended.

Let a semi-infinite string (x < 0), having density per unit length r,  
wavespeed c, be joined at x = 0 to a semi-infinite string (x > 0) with 
density r′, wavespeed c′. The tensions in the two strings are equal, 
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from which it can be shown that r′(c′)2 = rc2 = F, say. Let an incident 
wave of unit amplitude

yi(x, t) = eiwte−ikx

be incident from the left. (Note that the sign in the exponent is 
related to the direction of propagation in the usual way.) A wave

ytrans(x, t)= Beiw′te−ik′x

is transmitted to the right in the region x > 0, and a wave

yref(x, t) = Aeiwteikx

is reflected to the left.

Thus, the total disturbance on the string in x < 0 is

y1(x, t) = eiwt(eikx + Ae−ikx),
and for x > 0

y2(x, t) = Beiw′teik′x.

Consider now the conditions at x = 0.

1. The string does not break, so y is continuous:

  y1(0, t) = y2(0, t),

eiwt(1 + A) = Beiw′t.

x

y(
x,

 t)
 

FIGURE 11.12: Wave incident on a join. In the text we show that w = w′ so this diagram is 
often drawn omitting the factors eiwt.
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For this to hold at all times we must have w = w′ and

 1 + A = B. (11.29)

2. The vertical components of the force at x = 0 must balance. 
Since the tension on each side of the origin is the same, this 
means the slope must be the same also. Thus

1 2(0, ) (0, )
,

y y
x x

∂ ∂
=

∂ ∂
t t

or

 ik − ikA = ik′B. (11.30)

We now have two equations (11.29) and (11.30) for A and B. 
Solving gives

2
, .

k k k
A B

k k k k
′−

= =
′ ′+ +

The energy flux in a harmonic wave of amplitude a, frequency 
w, on a string with density r, wavespeed c is known to be

2 21
.

2
a crw

So the incident energy flux is

21 1
,

2 2
c kFrw w=

using F = rc2 and w = ck. Similarly the reflected flux is

21
2

A kFw

and the transmitted flux is

21
.

2
B k Fw ′
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The reflection coefficient is defined as

2reflected flux
incident flux

R A= =

and the transmission coefficient as

2transmitted flux
.

incident flux
k

T B
k
′

= =

Notice that the transmission coefficient is not B2 because the 
energy flux depends on wavenumber, which changes between the 
two strings.

Exercise 11.27 Show from first principles that the proportion of 
energy of a transverse wave which is reflected at a join between 
two different strings is given by

(z1 − z2)2/(z1 + z2)2

where z is the impedance of a string, z = density × wavespeed. 

Exercise 11.26 Show that R + T = 1.

x

E
n

e
rg

y

FIGURE 11.13: A matter wave incident from the left on a potential barrier V0. The common 
exponential factors e−iwt are often omitted.
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11.14.  MATTER WAVES INCIDENT ON A 
POTENTIAL STEP

For matter waves incident on a small potential step the math-
ematics follows closely that of the previous section, although the 
interpretation is different.

The incident wave of unit amplitude is yi = e−iwteikx, where 
= Ew   and = p k . The fact that this is a matter wave comes from 

the relation between w and k: the Schrödinger equation for a free 
particle gives E = p2/2m or 2= 2k mw  and hence

2
.

mE
k =



(Note the opposite signs in the exponentials in yi relative to  
Section 11.13. This is dictated by the interpretation as matter waves. 
Solutions of the Schrödinger equation are proportional to iEte−   and 
positive momentum means ipxe+  . For waves on strings only the 
relative sign between t and kx matters.)

Similarly the reflected wave is yr = Ae−iwte−ikx.

To the right of the origin the Schrödinger equation requires
2

0 ,
2
p

E V
m

= +

or, with ,p k′= 

02 ( )
´ .

m
k

−
=



E V

So the transmitted wave is yt = Be−iwteik′x. Thus in x < 0 the wave-
function is

y1 = e−iwt(eikx + Ae−ikx),
and in x > 0

y2 = Be−iwteik′x.

There are two cases to consider, depending on whether E > V0 
(k′ real) or E < V0 (k′ imaginary).
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(i) The small potential step. Assume first that E > V0 so k′ is 
real. In a steady state there can be no build up of probability 
at x = 0, so y must be continuous there:

y1(0,t) = y2(0,t),

or
 1 + A = B. (11.31)

Note that this holds for all time only if we can cancel the 
factors e−iwt, which requires w (or E) to be the same on both 
sides of the barrier at x = 0. This corresponds to conservation 
of energy. Similarly, the conservation of probability means 
that the probability current must be continuous across x = 0, 
so ∂y/∂x must be continuous. Thus

1 2(0, ) (0, )
,

x x
y y∂ ∂

=
∂ ∂

t t

or
 ik − ikA = −ik′B. (11.32)

Equations (11.31) and (11.32) are the same as equations 
(11.29) and (11.30) and yield the solutions

2
, .

k k k
A B

k k k k
′−

= =
′ ′+ +

The reflection and transmission coefficients are the same as 
for the string example (above). Again, we see an extra factor 
of k′/k in the transmission region to take account of the dif-
ferent speed of the wave there.

(ii) The large potential step. In this case E < V0 so k′ is imagi-
nary. Thus A and B are complex and the definition of reflec-
tion and transmission coefficients requires a little more care. 
The flux of energy is proportional to

E × particle probability density × speed ∝ E|ψ|2k.
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Thus the reflection coefficient is not A2 but R = |A|2. In gen-
eral (from the probability current)

2 2 Re( )
,

Re( )
k

R A T B
′

= =
k

Exercise 11.29 From first principles derive the reflection and 
transmission coefficients at a small potential step in terms of the 
energy E of the incoming particle and the height of the barrier V0.

Exercise 11.28 Show for a large potential step the reflection 
coefficient is R = 1 and find the wavefunction in the region x > 0.

Revision Notes

After completing this chapter you should be able to

•	  Write down the wave equation in one, two or three 
dimensions

•	  Understand the language used in the study of waves: 
frequency, wavenumber, wavespeed, phase, beats, phase 
and group velocity, eigenfunctions and eigenvalues, 
transmission and reflection coefficients

•	  Write down and derive the general solution of the wave 
equation in one space dimension

•	  Obtain the solution of the wave equation for an infinite 
string given its initial position and velocity

•	  Compute the group velocity of a wave given a relation 
between frequency and wavenumber

•	  Obtain separable solutions of simple linear partial 
differential equations and explain the terms eigenvalue, 
eigenfunction, normal mode

•	  Match solutions of the wave equation (and Schrödinger’s 
equation) across a boundary and find the corresponding 
reflection and transmission coefficients
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11.15. EXERCISES

1. Verify that y = Asin(ax) cos(act) is a solution of the wave 
equation

2 2

2 2 2

1y y
x c t
∂ ∂

=
∂ ∂

 where A, a are constants. Hence find the solution satisfying 

0( ) 2siny
l

 =  
 

xx, p  and y(0, t) = y(l, t) = 0 for all t.

2. Verify that [ ]1
( ) ( )

2
y f= − + +x ct f x ct  is the solution of 

the wave equation 
∂ ∂

=
∂ ∂

2 2

2 2 2

1y y
x c t

 satisfying y(x, 0) = f(x), 

0( ) 0.
y
t
∂

=
∂

x,

3. Verify that 
1

( , ) ( )
2

x ct

x ct
y G ds

c

+

−
= ∫x t s  is the solution of the 

wave equation 
2 2

2 2 2

1y y
x c t
∂ ∂

=
∂ ∂

 satisfying the initial conditions 

y(x, 0) = 0, ( ,0) ( ).
y
t
∂

=
∂

x G x

4. What is the general solution of 
2 ( , )

?
y

xt
x t

∂
=

∂ ∂
x t

5. If y(x,t) = exp[i(kx − wt)] satisfies 
2 2

2 2 2

1y y
x c t
∂ ∂

=
∂ ∂

 what is the 
relation between w and k?

6. Write down the normal modes of a stretched string with 
wavespeed c which is of unit length fixed at its end -points. 
Such a string is given a displacement y(x, 0) = 3 sin(2px) 
and released from rest. Show that the subsequent displace-
ment of the string is y(x,t) = 3 sin(2px) cos(2pct).

7. A semi-infinite string 0 ≤  x < ∞ is fixed at x = 0. A wave  
y = f(x + ct) impinges on x = 0 from the right. What is the 
reflected wave?
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11.16. PROBLEMS

1. Verify that

1 1
( , ) ( ) ( ) ( )

2

x ct

x ct
y x t F x ct F x ct G s ds

c

+

−

 = − + + +  ∫

 is the solution of the wave equation
2 2

2 2 2

1y y
x c t
∂ ∂

=
∂ ∂

 satisfying 

the initial conditions y(x, 0) = F(x), ( ,0) ( )
y

x G
t
∂

=
∂

x .

2. An infinite string is at rest along the x-axis. At time t = 0 it is 
struck in such a way that its velocity is non-zero only in the 
region |x| ≤ L. Show that, after a time L/c, at the point x = 0 
the string is again at rest. What parts of the string are at rest 
for times t ≥ L/c?

3. An infinite string is released from rest with the initial shape

( ) if 0
( ) if 0

0 otherwise

a l x

y a x l

− < <
= < <



l + x
l - x

 where a, l are constants. Show that after a time t = l/c the 
string at the point x = 0 is again at rest. What parts of the 
string are at rest for t > l/c?

4. An infinite string lies along the x-axis except for the region 
−l < x < l, where it is deformed from the axis. At t = 0 the 
string is released from rest. Show that, whatever the initial 
deformation, the string is again at rest at the origin (i.e.  
y(0, t) = 0) for t > l/c.

5. Separate variables in the wave equation 
2 2

2 2 2

1y y
x c t
∂ ∂

=
∂ ∂

 and 

hence find the solution obeying the conditions

( ,0) sin and ( ,0) siny x B
l t l

∂   = =   ∂   
x xp p
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 for 0 < x < p, where B, l, v are constants. Verify that the 
combination

2 2
2y

y
t l
∂   +   ∂   

cp

 is constant in time at each x.

6. By seeking solution of the form y(x, t) = X(x)T(t) to the 

wave equation 
2 2

2 2 2

1y y
x c t
∂ ∂

=
∂ ∂

 find the solution obeying the 

conditions y(x, 0) = 0, 
2

( ,0) sin
y c x
t l l
∂  =  ∂  

x p p
 and y(0, t) = 

y(1, t) = 0 for all t.

7. By seeking solutions of the form y(x, t) = X(x)T(t) to the 

wave equation 
2 2

2 2 2

1y y
x c t
∂ ∂

=
∂ ∂

 find the solution obeying the 

conditions y(0, t) = y(1, t) = 0 for all t and ( ,0) 0
y
t
∂

=
∂

x  and 

3
( ,0) sin sin

x x
y x a b

l l
   = +   
   
p p

 with a and b given con-
stants.

8. Use separation of variables to find all the separable solu-
tions of the equation

2 2
2 2

02 2 =0,c
t x
f f w f∂ ∂
− +

∂ ∂
 where c and w0 are constants.

9. An infinite stretched string, with wavespeed c, is given an 
initial displacement in the form of a Gaussian curve  
y(x, 0) = exp(−x2) and an initial velocity of the form  
yt(x, 0) = cx exp(−x2). Show that the subsequent displace-
ment consists of a Gaussian wave of fixed shape with 
amplitude 3/4 moving to positive x and a Gaussian wave of 
amplitude 1/4 moving to negative x. If the two waves can-
not be resolved while the displacement of the string has its 
greatest value at x = 0, show that the two waves will become 

apparent (i.e. can be resolved) after a time 
1/21 4

ln( )
3c

 
  

.





CHAPTER 12
FOURIER SERIES

12.1. INTRODUCTION

Many problems in physics involve vibrations and oscillations. 
Often the oscillatory motion is simple (e.g. weights on springs, 
pendulums, harmonic waves, etc.) and can be represented as a  
single sine or cosine function. However, in many cases (electro-
magnetism, heat conduction, quantum theory, etc.) the waveforms 
are not simple and, unlike sines and cosines, can be difficult to 
treat analytically.

Fourier methods give us a set of powerful tools for represent-
ing any periodic function as a sum of sines and cosines. The Fourier 
series of a function, f(x), with period 2L is

 

0
1

1
( ) cos sin .

2 n n
n

n x n x
f x a a b

L L
p p∞

=

 = + + 
 

∑  (12.1)

To see how this works, let us consider a sound wave. The vibra-
tion of a tuning fork produces a sound wave of a given frequency. 
If we plot the pressure as a function of distance, x, or time, t, it 
looks like a single sine wave, or a “pure tone” (Figure 12.1: left). 
When a note is played on a flute, we get a more complex sound  
(Figure 12.1: center). The note that we get is made up from the sum 
of many pure tones: the fundamental and different harmonics with  
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frequencies 2, 3, 4, . . . times the frequency of the fundamental (Fig-
ure 12.1: right). This series is the Fourier series representation of 
the complex waveform.

FIGURE 12.1: Left: a pure sine wave, sin(wt). Center: example waveform, f(t), from a flute. 
Right: the note from the flute is made up of the sum of the fundamental sine wave and a series 
of harmonics. In this example, f(t) = sin(wt) + sin(2wt) + 0.2sin(3wt) + 0.4sin(4wt). This is 
the Fourier series.

Fourier methods are used very heavily in signal and data analy-
sis. By Fourier analyzing a signal – essentially by expanding it in the 
form of equation (12.1) – we can immediately tell which harmon-
ics are the important ones. For example, in the note from the flute  
(Figure 12.1), the harmonic at frequency 2w has relatively large 
amplitude, while the harmonic at 3w is small. If, for example, a 
poorly designed speaker filtered out the harmonic at 2w it would 
greatly change the character of the sound, while filtering out the 
harmonic at 3w would have a much less discernible effect.

Fourier methods are also commonly used in mathematical phys-
ics. In this chapter, we will focus on using them to solve differen-
tial equations, and the wave equation in particular. We will examine 
Fourier half range series and Fourier full range series, study some 
applications of Fourier series, then finish by introducing Fourier 
transforms and the convolution theorem.

12.2. FOURIER HALF RANGE SINE SERIES

In Chapter 11, we calculated the separable solutions for a wave 
on a string that is fixed at both ends, at x = 0 and at x = L. In general, 
the displacement of such a string is

 
1

( , ) sin sin cos ,n n
n

n x n n
y x t a b

L L L
p p p∞

=

 = + 
 

∑ ct ct  (12.2)

where each of the an and bn for n = 1, 2, 3 . . . is an arbitrary constant 
that we can set once we know the boundary conditions for any given 
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problem. The range 0 to L is called the half range because it is half 
the maximum wavelength or spatial period.

Consider the case when the string is initially at rest and has ini-
tial displacement y(x, 0) = f(x). Then, by substituting t = 0 into equa-
tion (12.2), we find

 
x∞

=

=∑
1

( ) sin .n
n

n
f x b

L
p

 (12.3)

Given any physically reasonable function, f(x), can we find the coef-
ficients, bn, such that equation (12.3) is satisfied? Remarkably, yes! 
This is known as Fourier’s theorem.

Equation (12.3) is the Fourier half range sine series of a func-
tion, f(x). This is a very powerful result. It tells us that, within the 
range 0 to L, we can write any (physically reasonable) function as a 
sum of sine waves.

12.3. FOURIER SINE SERIES COEFFICIENTS

The Fourier half range sine series coefficients, bn, are given by

 
0

2
( )sin .

L

n

n x
b f x dx

L L
= ∫

p  (12.4)

Derivation of the Fourier Sine Series Coefficients
The formula for the bn can be derived directly from the Fourier 

series representation (Equation 12.3). First, multiply both sides of 
equation (12.3) by sin(mpx/L), then integrate from 0 to L. This gives

0 0
1

( )sin sin sin .
L L

n
n

m x n x m x
f x dx b dx

L L L

∞

=

=∑∫ ∫
p p p

The integral on the right hand side is a standard integral (equa-
tion 12.35) with result (L/2)dnm, where dnm is the Kronecker delta 
defined by dnm = 1 if m = n and dnm = 0 otherwise. Essentially, 
when the two sine waves in the integral on the right have a different 
wavelength they interfere destructively and cancel to zero. We get 
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a non-zero result for the integral only when the wavelengths are the 
same and hence when n = m.

Substituting in the result from equation (12.35), we have

0
1

( )sin .
2 2

L

n nm m
n

m x L L
f x dx b b

L
d

∞

=

= =∑∫
p

Finally, rearranging this equation and replacing the symbol m with 
n we find equation (12.4), the formula for the Fourier series sine 
coefficients.

12.4. USING THE FOURIER SERIES RESULTS

We can now use the results from equation (12.3) and equation 
(12.4) to find the Fourier half range sine series for any function, f(x).

Example 12.1 Calculate the Fourier series representation of 
the function f(x) = 1 in 0 ≤ x < L.

We wish to represent the function f(x) as a Fourier sine series,

( )
1

1 sin .n
n

n x
f x b

L

∞

=

= =∑ p

To do this, we simply need to calculate the appropriate Fourier 
coefficients bn using equation (12.4):

( )

( )( )

0 0

0

2 2
sin sin

2
cos

2
cos 1 .

L L

n

L

n x n x
b f x dx dx

L L L L
L n x

L n L
L

n
L n

= =

 = −   

= − −

∫ ∫
p p

p
p

p
p
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We can simplify this equation using cos(np) = (–1)n. Thus

 ( )( )= − −


= 


2
1 1

0 if iseven
4

if isodd.

n
nb

n
n

n
n

p

p

 

(12.5)

So the Fourier sine series of f(x) = 1 for 0 ≤ x < L is

 = ∑
odd

4
1 sin ,

n

n x
n L

p
p

 (12.6)

where the notation “n odd” simply means to take only the 
odd integer terms in the summation. We could also write this 
explicitly by defining a new integer counter, m = 0, 1, 2, . . ., and 
setting n = 2m + 1 so that n is always odd:

( )
( )

0

2 14
1 sin .

2 1m

m x

m L

∞

=

+
=

+∑
p

p

Figure 12.2 illustrates how the representation of f(x) = 1 
is built up by adding together sine waves from the series. 
Writing out the first few terms in equation (12.6) explicitly, 
we have

4 1 3 1 5
1 sin sin sin .

3 5
x x x

L L L
 = + + + 
 



p p p
p

As we add each successive sine term from the infinite series we 
get closer and closer to an exact representation of the function 
(Figure 12.2: right).
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x
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FIGURE 12.2: Left: the function f(x) = 1 in 0 ≤ x < L. Right: the first three partial sums of its 
Fourier sine series, dashed line f1 = 4 sin(px/L)/p, dotted line f2 = f1 + 4 sin(3px/L)/(3p), solid 
line f3 = f2 + 4sin(5px/L)/(5p). As we add each successive term from the infinite series we get 
closer and closer to the exact representation of the function.

Exercise 12.1 If f(x) is given by f(x) = x in 0 ≤ x < L, show that the 
Fourier sine series coefficients are given by bn = 2L(–1)n+1/(np). 
Hence show that the Fourier sine series for f(x) is

  = − + − 
 



2 1 2 1 3
sin sin sin .

2 3
L x x x

x
L L L
p p p

p
 (12.7)

Figure 12.3 shows f(x) = x and the first three partial sums of the 
Fourier sine series of f(x).

L x
 0

 L

L0 x

y

 0

 1

0

y

FIGURE 12.3: Left: the function f(x) = x in 0 ≤ x < L. Right: the first three partial sums  
of its Fourier sine series, dashed line f1 = 2L sin(px/L)/π, dotted line f2 = f1 – 2L sin(2px/L)/(2p), 
solid line f3 = f2 + 2L sin(3px/L)/(3π).
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L x
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FIGURE 12.4: Left: the function g(x) from exercise 12.2. Right: the first three partial sums of 
its Fourier sine series, dashed line f1 = 4sin(px/L)/p2, dotted line f2 = f1 – 4sin(3px/L)/(9p2), 
solid line f3 = f2 + 4sin(5px/L)/(25p2).

12.5. APPLICATION TO THE WAVE EQUATION

The separable solutions to the wave equation for a string fixed at 
x = 0 and x = L are

 ( )
∞

=

 = + 
 

∑
1

, sin sin cos .n n
n

n x n ct n ct
y x t A B

L L L
p p p  (12.8)

Exercise 12.2 A function g(x) is defined by

( )
if 0 2

1 if 2 .
x L x L

g x
x L L x L

≤ <
=  − ≤ <

By expanding g(x) as a Fourier sine series show that

( ) ( )
1

2

2 2
odd

4 1
sin .

n

n

n x
g x

n L

−

−
= ∑ p

p

Hint: the integral for bn can be split into the sum of two parts 

of the form ( ) ( ) ( )
b c b

a a c
f x dx f x dx f x dx= +∫ ∫ ∫  where a < c < b. See 

Figure 12.4 for a depiction of f(x) and the first three partial sums 
of its Fourier sine series.
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Armed with results 12.3 and 12.4, we can now find the coeffi-
cients An and Bn given a set of initial conditions.

Let us examine the general case when the string is given an 
initial displacement, y(x, 0) = p(x), and an initial velocity, yt(x, 0) 
= q(x). By substituting t = 0 into equation (12.8) we immediately 
find that

( ) ( )
1

,0 sin .n
n

n x
y x p x B

L
p∞

=

= = ∑

This looks like the Fourier sine series of p(x) with Fourier series 
coefficients Bn. So, to find the coefficients Bn we simply need to 
apply the formula in equation (12.4):

 ( )
0

2
sin .

L

n

n x
B p x dx

L L
p

= ∫  (12.9)

We can follow a similar process to find the An. First, find the 
transverse velocity of the string:

( )
1

, sin cos sin .t n n
n

y n x n c n ct n c n ct
y x t A B

t L L L L L

∞

=

∂  = = − ∂  
∑ p p p p p

So at t = 0

( ) ( )
1

,0 sin .n
t

n

A n c n x
y x q x

L L

∞

=

 = =  
 

∑ p p

Again, this looks like the Fourier sine series of q(x) with Fourier 
series coefficients Annpc/L. So to find Annpc/L we simply need to 
apply the formula in equation (12.4):

( )
0

2
sin ,

L
nA n c n x

q x dx
L L L

  = 
  ∫

p p

giving

 ( )
0

2
sin .

L

n

n x
A q x dx

n c L
p

= ∫p
 (12.10)
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Example 12.2 A string fixed at x = 0 and at x = L is given 
constant initial velocity, yt(x, 0) = v, and zero initial displacement,  
y(x, 0) = 0. Find y(x, t).

In general,

( )
1

, sin sin cos .n n
n

n x n ct n ct
y x t A B

L L L

∞

=

 = + 
 

∑ p p p

To find y(x, t) given a set of initial conditions, substitute the initial 
conditions into the general solution, find equations involving the 
unknown coefficients An and Bn, then calculate An and Bn using the 
formula for the Fourier sine series coefficients, equation (12.4).

At t = 0 the displacement of the string is zero, so

1

0 sinn
n

n x
B

L

∞

=

=∑ p

giving Bn = 0. 

At t = 0 the initial velocity is v, so

1

sin .n

n

A n c n x
v

L L

∞

=

 =  
 

∑ p p

This is just the Fourier series representation of a constant, v. So

0

2
sin .

L
nA n c n x

v dx
L L L

  = 
  ∫

p p

Then using the result from equation (12.5),

0 if iseven
4

if isodd
n

n
A n c

v
L n

n


  =  

  

p

p

from which

2 2

0 if iseven
4 if isodd.n

n
A

vL n c n


= 
 p

Once we have calculated the An and Bn we can write down 
the full solution y(x, t) that describes the displacement of 
the string as a function of x and t. In the case when the initial 
displacement is 0 and the initial velocity is v,

 ( ) = ∑ 2 2
odd

4
, sin sin .

n

vL n x n ct
y x t

n c L L
p p

p
 (12.11)
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FIGURE 12.5: Wave from exercise 12.5. From left to right the panels show the displacement 
(solid line) and transverse velocity (dashed line) of the string at t = 0, t = L/4c, t = 3L/4c and 
t = L/c.

12.6.   APPLICATION TO OTHER DIFFERENTIAL 
EQUATIONS

We can use the techniques from Section 12.5 to find the solu-
tions to other differential equations.

As a brief example, let us consider the solution to the Laplace 
equation for the electrostatic potential f(x, y) on a metal plate,  

Exercise 12.3 The initial displacement of a string of length L 
fixed at its end points x = 0 and x = L is given by y(x, 0) = ax, 
where a is a constant. The initial velocity is zero. Find the solution 
for y(x, t) as an infinite series.

Exercise 12.4 A string is fixed at its end-points at x = 0 and x = L.  
If the initial displacement is y(x, 0) = sin(px/L) and the initial 
velocity is yt(x, 0) = x, find the solution for y(x, t) as an infinite 
series.

Exercise 12.5 A string fixed at its end-points x = 0 and x = L 
is released from rest with initial displacement y(x, 0) = exp(–a2 

(x – L/2)2) where a >> 1/L. Find the displacement y(x, t) at time t.

You may assume that if aL is large then

( )22 2 2 2 22 4

0
sin sin .

2

L x L n Ln x n
e dx e

L
a a

a
− − −≈∫ pp p p

Figure 12.5 shows the displacement of the string, y(x, t), at four 
different times.
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fxx + fyy = 0. Suppose the potential f(x, y) → 0 as y → ∞ and is set 
to zero at x = 0 and x = L; then

( )
1

, sin .n y L
n

n

n x
x y B e

L

∞
−

=

=∑ pp
f

If the potential at y = 0 has the form p(x), then

( ) ( )
1

,0 sin ,n
n

n x
x p x B

L
f

∞

=

= =∑ p

and we can calculate the coefficients simply by applying the formula 
for the Fourier sine series coefficients,

( )
0

2
sin .

L

n

n x
B p x dx

L L
= ∫

p

Figure 12.6 shows a solution to the Laplace equation, f(x, y), 
satisfying the boundary equations in Exercise 12.6.

Exercise 12.6 The electric potential f(x, y) has boundary con-
ditions f(x, 0) = x2, f(0, y) = 0, f(L, y) = 0 and f(x, y) → 0 as  
y → ∞. Show that

 ( ) ( ) ( )( )f
∞

+ −

=

 
= − + − − 

 
∑

2 2
1

3 3
1

2 4
, 1 1 1 sin .n n n y L

n

L L n x
x y e

n n L
pp

p p
 (12.12)
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FIGURE 12.6: φ(x, y) from equation (12.12). Left: map of the electric potential. Right:  
equipotential lines.
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12.7. FOURIER HALF RANGE COSINE SERIES

Another representation of a function defined in the range 0 ≤ x < L  
uses cosine instead of sine functions. This is equally valid: within the 
range 0 ≤ x < L both sines and cosines form mathematically complete 
sets. This means we can expand any function within this range in 
terms of either sines or cosines.

The cosine representation of a function f(x) is

 ( )
∞

=

= +∑0
1

1
cos .

2 n
n

n x
f x a a

L
p  (12.13)

The factor of 1
2

 in front of a0 is simply for convenience in that it 
allows us to give a single formula for the an for all n.

The coefficients an, n = 0, 1, 2, . . . are given by

 ( )= ∫0
2

cos .
L

n

n x
a f x dx

L L
p

 (12.14)

It is often easier to perform the calculation for a0 separately from all 
the other an. Then a0 is simply

 ( )= ∫0 0

2
.

L
a f x dx

L
 (12.15)

Note that 
1
2

a0 is simply the average of the function f(x) in the range 
0 ≤ x < L.

Derivation of Fourier Cosine Series Coefficients
The derivation for an is along similar lines to that of the Fourier 

sine series coefficients. First multiply both sides of equation (12.13) 
by cos(mpx/L) and integrate from 0 to L:

 ( ) 00 0

0
1

1
cos cos

2

cos cos .

L L

L

n
n

m x m x
f x dx a dx

L L
n x m x

a dx
L L

∞

=

=

+

∫ ∫

∑ ∫

p p

p p

 
(12.16)
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From the standard integral (Equation 12.36) all the terms in the 
sum on the right of equation (12.16) are zero except for the one with 
m = n. Hence, if m = n,

( ) 2

0 0
cos cos ,

2

L L

m m

m x m x L
f x dx a a

L L
= =∫ ∫

p p

and by rearranging and replacing m by n we have the result in  
equation (12.4).

If we choose m = 0 in equation (12.16), then cos(mpx/L) = 1 and 
all the terms in the sum go to zero. We are left with

( ) 0 00 0

1
,

2 2

L L L
f x dx a dx a= =∫ ∫

which gives the result for a0 in equation (12.15).

Exercise 12.7 The function f(x) = x in 0 ≤ x < p is expanded as 
a Fourier cosine series. Calculate the coefficients a0 and an, and 
show that

 
= − ∑ 2

odd

4 1
cos .

2 n

x nx
n

p
p  

(12.17)

The function f(x) = x and the first three partial sums in its Fourier 
cosine series are shown in Figure 12.7.

L x
 0

 L
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FIGURE 12.7: Left: the function f(x) = x in 0 ≤ x < p. Right: the first three partial sums of its 
Fourier cosine series, dashed line f1 = p/2 – 4cos(x)/p, dotted line f2 = f1 – 4 cos(3x)/(9p), solid 
line f3 = f2 – 4 cos(5x)/(25p). As we add each successive term from the infinite series we get 
closer and closer to the exact representation of the function f(x) = x.
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12.8. NUMERICAL SERIES

Both sine and cosine Fourier representations can be used to 
derive interesting numerical series results for constants. Take, for 
example, the result from equation (12.17). Writing out the first few 
terms in the cosine series for x defined between 0 and π we have

4 1 1
cos cos 3 cos 5 . . . .

2 9 25
x x x x = − + + + 

 
p

p

This equation is true for any x where 0 ≤ x < p. We can substi-
tute a particular value for x into both the left and right sides and the 
equality will still hold. Let us choose, for example, x = 0. Then all the 
values cos nx = 1 and so

4 1 1
0 1 . . .

2 9 25
 = − + + + π  

p

giving

2 1 1
8 1 . . . ,

9 25
 = + + + 
 

p

which is a series expansion for p2.

Exercise 12.8 A function f(x) is defined by

( )
1 0 2
0 2 .

x L
f x

L x L

≤ <
=  < <

Expand f(x) as a Fourier cosine series and show that an = 0 if n is 
even and that, if n is odd,

 ( )( )1 /22
1 .n

na
n

−= −
p

 (12.18)

Write down the cosine series for f(x) in 0 ≤ x < L and deduce that

1 1 1
1 .

4 3 5 7
= − + −

p
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12.9. PERIODIC EXTENSION OF FOURIER SERIES

So far we have examined the sine and cosine Fourier series rep-
resentations of functions within a limited range, 0 ≤ x < L. However, 
both sine and cosines repeat periodically. So, if we plot the Fourier 
series representations outside of this range we will get functions that 
repeat periodically with wavelength 2L.

Outside the given finite range, the Fourier series of f(x) repre-
sents a periodic extension of the function with f(x + 2L) = f(x).

To understand the periodic extension of Fourier series it is impor-
tant to first understand the symmetry of even and odd functions. There 
is a short section on even and odd functions in Chapter 3.

12.10.   EVEN AND ODD SYMMETRY OF PERIODIC 
FUNCTIONS

Sine waves are odd, so any Fourier sine series representation of 
a periodic function must have odd symmetry. Similarly, cosine waves 
are even, so any Fourier cosine series representation of a periodic 
function must have even symmetry.

y

x–L 0 L 2L

y

x—L 0 L 2L

y

x—L 0 L 2L

FIGURE 12.8: Left: Fourier sine or cosine representation of f(x) = x within 0 ≤ x < L. Center: 
periodic extension of sine series representation of f(x). Right: periodic extension of cosine 
series representation of f(x).

Figure 12.8 shows sine and cosine representations of f(x). Earlier 
we saw that within 0 ≤ x < L we could expand the function f(x) = x  
either as a sine series, or as a cosine series (Figure 12.8: left). However, 
because sines and cosines have different symmetry, when we expand the 
range we obtain different shape waveforms for each of the series: the 
“sawtooth” wave for the sine series (Figure 12.8: center) has odd symme-
try, while the “triangle” wave for the cosine series (Figure 12.8: left) has 
even symmetry. For both periodic extensions, f(x) = f(x + 2L). For the 
sine series we also have f(x) = –f(–x) and, for the cosine series, f(x) = f(–x).
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Example 12.3 Sketch the Fourier cosine representation of 
f(x) = x3 in the range —L ≤ x < 3L.

First sketch the function f(x) = x3 
between 0 and L.

Next, we know that cosines are even 
functions, so the Fourier cosine series 
must be even. This allows us to sketch 
the Fourier cosine series between –L and 
0.

Cosines and hence the Fourier cosine 
series must repeat every 2L. So the 
shape of the waveform between –L and 
L simply repeats, and we can sketch the 
cosine series of f(x) = x3 between –L 
and 3L.

L-L

f(x)

0

L

f(x)

-L 2L 3L0

0 L

f(x)

Exercise 12.9 A function is defined by f(x) = x2, for 0 ≤ x < L. 
Sketch the Fourier sine and cosine series representations of f(x) 
in –L < x < 3L.

Exercise 12.11 Within 0 ≤ x < L, f(x) = x can be expanded as 
a sine series equation (12.7) or a cosine series equation (12.17). 
What functions do each of these series represent in the range  
–L ≤ x < 0?

Exercise 12.10 A function g(x) is defined by.

( )
if 0 2

1 if 2 .
x L x L

g x
x L L x L

≤ <
=  − ≤ <

Sketch the Fourier sine and Fourier cosine representations of 
g(x) in –L ≤ x < 3L.
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Figure 12.9 shows three examples of waveforms that are com-
mon in signal analysis. We can obtain a square wave by expanding 
the range of the Fourier half range sine series representation of  
f(x) = 1. We can similarly obtain a triangle wave from the Fourier half 
range cosine series representation of f(x) = x from Exercise 12.7. But 
what happens if we consider a function, f(x), defined in the full range 
from x = –L to x = L? If f(x) is neither even nor odd then we cannot 
expand it as only a sum of sine waves or only a sum of cosine waves. 
Instead we must use a Fourier full range series (Section 12.11).

The rectified half wave (Figure 12.9: right) is one such function. 
This is obtained from the full series representation of a function 
defined by f(x) = 0 where –L ≤ x < 0, f(x) = sin(px/L) where 0 < x < L.

FIGURE 12.9: Some common waveforms: square wave (left), triangle wave  
(center), rectified half wave (right).

12.11. FOURIER FULL RANGE SERIES

The range 0 to 2L (or, alternatively, –L to L) is called the full 
range because it contains a full wavelength of the periodic function. 
In this section we will mostly use the range –L to L; however, the 
ranges 0 to 2L and –L to L are exactly equivalent.

In the range –L to L neither sine nor cosine waves form a com-
plete set. If a function defined between –L and L has odd symmetry 
it can be represented as a sine series. If a function has even sym-
metry it can be represented as a cosine series. However, in the gen-
eral case, to represent a function of arbitary symmetry, we need to 
include both sine and cosine terms in the representation.

The full range Fourier series for f(x) in the range –L < x < L is

 ( )
∞

=

 = + + 
 

∑0
1

1
cos sin .

2 n n
n

n x n x
f x a a b

L L
p p

 (12.19)
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The formulae for the Fourier series full range coefficients can 
be derived in a similar way to the formulae for the sine and cosine 
half range coefficients. We have

 ( )

( )

( )

−

−

−

=

=

=

∫

∫

∫

0

1

1
cos

1
sin .

L

L

L

n L

L

n L

a f x dx
L

n x
a f x dx

L L
n x

b f x dx
L L

p

p

 

(12.20)

Note that if the full range is defined to be between 0 to 2L the 
formulae remain the same except that the limits of the integration 
are from 0 to 2L.

Exercise 12.12 A function f(x) = 1 + x within –p ≤ x < p. Calcu-
late the Fourier full range series of f(x).

Exercise 12.13 Calculate the full range Fourier series for a  
“sawtooth” wave, f(x) = x, –p < x < p. Explain why the series is the 
same as the half range sine representation in Exercise 12.1. By writ-
ing out the result for an appropriately chosen value of x, show that

( )
0

1
.

2 1 4

m

m m

∞

=

−
=

+∑ p

12.12. COMPLEX FORM OF FOURIER SERIES

Instead of equation (12.19) we could equally well write the com-
plex form

 ( )
∞

=−∞

= ∑ ,in x L
n

n

f x c e p
 (12.21)

where

 ( ) −

−
= ∫

1
.

2

L in x L
n L

c f x e dx
L

p  (12.22)
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Sometimes this form is more convenient than the sine and cosine 
forms.

Derivation of Complex Series Results
Recalling that sines and cosines can be written in terms of com-

plex exponentials we can obtain equation (12.21) directly from equa-
tion (12.19):

( ) 0 1 1 2 2

0 1 1

2 2
cos sin cos sin . . .

2 2

i x L i x L i x L i x L

x x x x
f x a a b a b

L L L L
e e e e

a a b
i

p p p p

p p p p

− −

= + + + + +

+ −
= + +

    
2 2 2 2

2 2 .
2 2

i x L i x L i x L i x Le e e e
a b

i

− −+ −
+ + +

p p p p

Collecting together exponentials with the same powers we have

( ) ( )( ) ( )( )2
2 2 1 1 02 2 2 2i x L i x Lf x a b i e a b i e a− −= + − + − +

p p

( )( ) ( )( ) 2
1 1 2 22 2 2 2i x L i x La b i e a b i e+ + + + +p p

2 2
2 1 0 1 2 ,i x L i x L i x L i x Lc e c e c c e c e− −
− −= + + + + + + 

p p p p

which is identical to equation (12.21).

To find the formula for the complex coefficients, cn, multiply 
both sides of equation (12.21) by e-ipmx/L and integrate:

( ) ( )

1

.
L L i n m x Lim x L

nL L
n

f x e dx c e dx
∞

−−

− −
=−

= ∑∫ ∫ pp

The integral on the right is a standard integral, equation (12.40). 
Using this result we find

 ( ) d
∞

−

−
=−∞

= ∑∫ 2 .
L im x L

n nmL
n

f x e dx c Lp  (12.23)

Then rearranging equation (12.23) for cn we obtain the result in 
equation (12.22).
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Exercise 12.14 If f(x) = 1 + x, –L < x < L, show that the complex 
Fourier series coefficients are given by

( ) ( )1

1 0

1 0.n n

n
c

L in n+

== 
− ≠ p

Exercise 12.15 The function f(x) = exp(px) in –p ≤ p < p. Expand 
f(x) as a sum of complex exponentials to show that

( ) ( )
( ) ( )1

sinh .
n

inx

n

f x p e
p in

∞

=−∞

−
=

−∑ p
p

Example 12.4 Verify that the result for the complex 
Fourier series in Exercise 12.14 is equal to that obtained in  
Exercise 12.12.

The complex Fourier series for f(x) = 1 + x in –L < x < L is

( ) ( ) ( )1 11

1

1 1
1 .

n n
in x L in x L

n n

L L
f x e e

in in

+ +− ∞

=−∞ =

− −
= + +∑ ∑p p

p p

Then replacing n by –n in the first summation, and factorizing 
out –L/π, we have

( ) ( )
( )

( ) ( )

( )

( )

−∞
−

=

∞
−

=

+∞

=

 − −−
= + + 

−  

−−  = + − 

−
= +

∑

∑

∑

1

1

1

1

1 1
1

1
1

2 1
1 sin ,

n n
i n x L in x L

n

n
in x L in x L

n

n

n

L
f x e e

i n in

L
e e

in

L n x
n L

p p

p p

p

p

p
p

 

(12.24)

where, in the last step, we have used the fact that 
( )2 sin .in x L in x Le e i n x L−− =p p p
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12.13. PROPERTIES OF FOURIER SERIES

Here we quote without proof some facts about Fourier series 
that you should know.

General Properties
a)  Except for some pathological functions which do not occur in 

physical problems, we can always expand a function, f(x), defined 
in a finite interval as a Fourier series which will converge with 
sum f(x) at all points at which f(x) is continuous.

b)  If f(x) has a discontinuity at x = x0 its Fourier series will con-
verge to the average of the limit from the left and the limit 

from the right. The Fourier series of 
a discontinuous function sums to a 
value midway along the discontinuity.

( ) ( ) ( )( )0 0 00

1
lim .

2
f x f x f x

Œ
Œ Œ

→
= + + −

c)  A Fourier series can be integrated term by term: the resulting 
series always converges to ( )f x dx∫ .

d)  Term by term differentiation of a Fourier series may produce a 
divergent series. If the series produced by differentiation does 
converge, then it is the Fourier series for f ¢(x).

Convergence of Series
The properties above apply to the full Fourier series containing 

an infinite number of terms. In practice we often calculate the sum 
of only a finite number of the terms in the series which we use as an 
approximation. It is important to know when this is likely to give a 
good approximation.

a)  If f(x) or its periodic extension has discontinuities we expect an, 
bn, cn to be of order 1/n and the convergence is slow.

b)  If f(x) or its periodic extension is continuous we expect an, bn, cn 
to be of order 1/n2 and the convergence is rapid.

c)  The Gibbs phenomenon. At a discontinuity (at x0, say) conver-
gence of a Fourier series is slow and a finite sum of N terms will 
persistently under- or over-estimate f(x) near x0. The size of the 

y

xx0

f   (x0)
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overshoot (or undershoot) does not tend to zero as N → ∞, but 
the region of the overshoot (or undershoot) does become nar-
rower as the series converges.

The figure on the left 
shows the partial Fourier 
sine series of f(x) = 1, 0 ≤ 
x < p with N = 3 (dashed), 
N = 5 (dotted) and N = 25 
(solid line) terms.

x

y

Exercise 12.16 By using the results above briefly explain why 
the convergence of the half range cosine series representation of 
x (Equation 12.17) is much faster than that of the sine series rep-
resentation (Equation 12.7).

Exercise 12.17 State whether each of the following functions, 
defined in the range −p < x < p, can be expanded as (a) a Fourier 
sine series, (b) a cosine series or (c) a Fourier series containing 
both sine and cosine terms: (i) x3; (ii) x2 + x; (iii) exp(x); (iv) |x|.

12.14.   FOURIER TRANSFORMS AND FOURIER 
INTEGRALS

So far, we have seen that we can express an arbitrary periodic 
function as a Fourier series, a sum of harmonic (sine and cosine) 
waves.

The Fourier transform gives us an analogous way to represent a 
general function that is not periodic. Fourier transforms are used in 
an enormous range of pure and applied science, including informa-
tion processing, electronics and communications.

The Fourier series of a function f(x) with period λ = 2L can be 
written as

 ( ) 2 .in x L in x
n n

n n

f x c e c ep p l
∞ ∞

=−∞ =−∞

= =∑ ∑  (12.25)
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So what happens if the function is non-periodic? A non-periodic 
function is equivalent to a periodic function in the limit that λ → ∞.  
So, let us consider what happens to 12.25 when λ becomes large.

First we define a new variable k = 2pn/λ. Then we can think of 
the Fourier coefficients cn as a function ( ) 2kf k c=

l p  defined on a 
line of points in k-space. The distance between the points in k-space 
is ∆k = 2p/λ. Then we can rewrite the sum in equation (12.25) as

( ) ( ) ( )1
2

ikx ikx ikx
n k

n n n

f x c e f k e F k e
∞ ∞ ∞

=−∞ =−∞ =−∞

= = = ∆
π∑ ∑ ∑

where ( ) ( )F k f kl=  . In the limit λ → ∞ the spacing between the 
points, ∆k, tends to zero and the sum becomes an integral:

 ( ) ( )
∞

−∞
=

π ∫
1

.
2

ikxf x F k e dk  (12.26)

This is a Fourier integral. It is a representation of an arbitrary (non-
periodic) function, f(x), in terms of simple harmonics.

12.15. FOURIER TRANSFORMS

To obtain a result for F(k) in equation (12.26) we simply apply 
the formula (Equation 12.22) for the Fourier series coefficients,  
cn = ckλ/2π, in the limit as λ → ∞,

 ( ) ( )2lim .ikx
kLF k c f x e dx

∞ −
π −∞λ→∞

= = ∫l  (12.27)

F(k) is called the Fourier transform of f(x). The two functions, F(k) 
and f(x), are called a Fourier transform pair; f(x) is the inverse Fou-
rier transform of F(k).

Unfortunately there is no standard definition in the literature 
of what constitutes the transform and what constitutes the inverse 
transform. The only requirement is that one of equations (12.26) 
and (12.27) contains e-ikx and one contains eikx. Similarly there is no 
set convention for the constant factors in front of these integrals. 
We have used a factor 1/2p on the inverse transform and 1 on the 
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transform, but you will often see the opposite of this, or sometimes 
1 2p  is used in front of both. This means that, when reading the 
literature, you should be careful to identify the conventions used.

The argument of the Fourier transform, k, has units that are the 
reciprocal of the dimensions of the variable x. We will often use x to 
denote position, in which case k is the wavenumber. Similarly, if the 
variable is a time, t, the transform variable will be a frequency, often 
denoted by w. Physicists often talk about using Fourier transforms 
to transform from real space to reciprocal or k-space, or from the 
time-domain to the frequency-domain.

12.16. CALCULATING FOURIER TRANSFORMS

Fourier transforms and integrals are ordinary integrals that can 
be evaluated in the usual way. We will consider a specific example: 
the Fourier transform of a Gaussian.

Example 12.5 Find the Fourier transform of 
( ) ( )2 2expf x x s= − . From equation (12.27) we have

( ) ( )2 22 2

.
x ikxx ikxF k e e dx e dx

ss∞ ∞ − +− −

−∞ −∞
= =∫ ∫

This integral is performed with a standard trick. First, we 
complete the square in the argument of the exponential,

( )22 2 2 22 4.x ikx x ik ks s s s+ = + +

Then

 
( ) ( )s ss

ss

∞ − +−

−∞

∞ ′− −

−∞

=

′=

∫
∫

22 2

2 2 2

24

4

,

,

x ikk

k x

F k e e dx

e e dx
 (12.28)

where we have changed variable from x to x¢ = x/s − iks/2, so 
dx¢ = dx/s. In this particular case, the change of variable leaves 
the limits on the integral unchanged at −∞ and ∞. Then, using 
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the fact that ( )2exp x dx
∞

−∞
− =∫ p , we find that the Fourier 

transform of the Gaussian is

 ( )
2 2 4 .kF k e ss −= p  (12.29)

So the Fourier transform of a Gaussian of half width s is a 
Gaussian of half width 2/s; thus a wide Gaussian function in 
real space transforms to a narrow Gaussian function in k-space 
and vice-versa.

Exercise 12.19 Find the inverse Fourier transform of F(k) = 
exp(−k2/4).

Exercise 12.18 Show that the Fourier transform of the function 
defined by f(x) = a for |x| ≤ L, f(x) = 0 for |x| > L is

( ) 2 sin
.

a kL
F k

k
=

12.17. CONVOLUTIONS

Here we will briefly introduce a useful result: the convolution 
theorem.

A convolution integral has the general form

 ( ) ( ) ( )
∞

−∞
′ ′ ′= −∫ .C x f x x g x dx  (12.30)

This integral relates an output function, C(x), to the input g(x) 
and the response f(x). Figure 12.10 shows an example from imag-
ing processing where we degrade an initially sharp image with 
a Gaussian “blur.” The process is illustrated in one dimension 
in Figure 12.11: we convolve the input, g(x), with a Gaussian 
response function, f(x) = exp(−x2), to give the new blurred output 
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( ) ( ) ( )2expC x x x g x dx
∞

−∞
 ′ ′ ′= − − ∫ . You will often see a similar 

effect in experimental physics where some initially sharp “input” sig-
nal will suffer from Gaussian broadening as a result of an imprecise 
experimental response.

FIGURE 12.10: Image processing with convolutions. A sharp image of a circle (left) is con-
volved with a Gaussian response function to give the blurred image (right).
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FIGURE 12.11: Example convolution. Left: sharp “input” signal, g(x) = 1, |x| < 3. Center: 
Gaussian response function, f(x) = exp(−x2). Right: blurred output signal, 

( ) ( ) ( )C x f x x g x dx
∞

−∞
′ ′ ′= −∫ .

12.18. CONVOLUTION THEOREM

The convolution theorem is a useful relation between the Fou-
rier components of the input and output functions. According to the 
convolution theorem,

 ( ) ( ) ( )= .C k F k G k  (12.31)

To prove this relation we simply calculate the Fourier transform of 
the output function C(x),

( ) ( ) ( ) ( ) .ikx ikxC k C x e dx f x x g x e dx dx
∞ ∞ ∞− −

−∞ −∞ −∞
′ ′ ′= = −∫ ∫ ∫
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Putting u = x − x¢ and using u as the integration variable instead of 
x we have

( ) ( ) ( ) ( )

( ) ( )
( ) ( ).

ik x u

iku ikx

C k f u g x e dx du

f u e du g x e dx

F k G k

∞ ∞ ′− +

−∞ −∞

∞ ∞ ′− −

−∞ −∞

′ ′=

′ ′=

=

∫ ∫
∫ ∫

12.19. FOURIER DECONVOLUTION

The convolution theorem tells us that convolutions in real space 
are simply multiplications in reciprocal space. This is very useful if 
we want to deconvolve a signal.

For example, let us imagine that, in an experiment, we want 
to measure some input g(x). However, because of our experi-
mental response, f(x), we actually measure a degraded output 
signal, C(x). How do we get back to the actual input that we 
would like to measure? We could try to solve the integral equa-
tion (12.30) for g(x) but it is much easier to make use of the 
convolution theorem.

In reciprocal space we can find G(k) by dividing C(k) by F(k). 
Then we can easily obtain g(x) with an inverse transform,

 ( ) ( )
( )

∞

−∞
=

π ∫
1

.
2

ikxC k
g x e dk

F k
 (12.32)

Figure 12.12 shows an illustration of this process. An initially blurred 
image is sharpened by deconvolving the image with a Gaussian 
response function.

FIGURE 12.12: Sharpening of an image by deconvolution. From left to right:  
original blurred image C(x, y); Fourier transform of blurred image, C(kx, ky); response function 
in reciprocal space, F(kx, ky); input function in reciprocal space, G(kx, ky) = C(kx, ky)/F(kx, ky); 
deconvolved image, g(x, y).
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12.20. EXTENSION: LAPLACE TRANSFORM

We define the Laplace transform of the function f(t) by

( )
0

( ) .stF s e f t dt
∞ −≠ ∫

Note how this differs from the Fourier transform: we replace the 
complex exponential by a real exponential and integrate only from 
0 to ∞. The Laplace transform is useful for finding the solutions of 
linear differential equations with constant coefficients, particularly 
equations with time as the independent variable, because it readily 
allows us to incorporate the initial conditions. It has the disadvan-
tage that the inverse transform is not straightfoward; in particular

( )
0

( ) stf t F s e ds
∞ −≠ ∫  in general. In practice, one can look up tables 

of transform pairs.

Exercise 12.20 Write down the analogous results for the con-
volution integral and convolution theorem, in the time and fre-
quency domain.

Exercise 12.21 If ( ) ( ) ( )c t f t t g t dt
∞

−∞
′ ′ ′= −∫  show that C(w) = 

F(w)G(w) where C(w), F(w) and G(w) are the Fourier transforms 
of c(t), f(t) and g(t), respectively.

Exercise 12.22 In reciprocal space an experimen-
tal signal that has been broadened with a Gaussian 
response function, ( ) ( )2exp 4F k ak= −p , has the form 

( ) ( ) ( )22 exp 4 sinC k k ak k= −p . Use the convolution theo-

rem to write down the input signal, G(k), in reciprocal space, then 

transform this into real space to find the original form of the input, 
g(x). (Hint: you can often find a Fourier transform simply by recog-
nizing that it is related to a known inverse transform.)
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To see how this works, consider the equation of a driven har-
monic oscillator,

 ( )+ = .x x f t  (12.33)

We take the Laplace transform of both sides by multiplying by e−st 
and integrating. We have

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

00 0

2

0 0
2

0

0 0 .

st st st

st st

e xdt e x t s e x t dt

x s e x t s e x t dt

x sx s X s

∞ ∞∞− − −

∞∞− −

 = + 

 = − + + 
= − − +

∫ ∫
∫

  





Thus the transform of equation (12.33) gives

 ( ) ( ) ( ) ( )+ +
=

+


2

0 0
.

1
F s sx x

X s
s

 (12.34)

We can now find the solution of the differential equation by 
looking up the inverse Laplace transforms of s/(s2 + 1) and 1/(s2 + 1)  
(which are sin(t) and cos(t), respectively) and, if it is known,  
F(s)/(s2 + 1) for the particular form of F(s), the Laplace transform 
of f(t). More complicated linear equations can be treated similarly, 
although explicit solutions will be obtained only where the inverse 
Laplace tranforms can be found.

You may be wondering what is special about the exponential 
here and in the Fourier transform. In fact, transforms can be and are 
defined for various classes of functions (besides the exponential) for 
which an inverse transform can be found. (A transform from which 
the original function cannot be retrieved is obviously losing informa-
tion and is unlikely to be useful.)
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Revision notes

After completing this chapter you should be able to

•	 Appreciate how an arbitrary periodic function can be 
represented by an infinite summation of sines and 
cosines, the Fourier series of a function

•	 Use the Fourier series representation to find the 
solution of partial differential equations, including the 
wave equation, satisfying given boundary conditions

•	 Distinguish between full range (both complex and 
real form) and half range sine and cosine Fourier 
representations of a given function

•	 Write down the formulae for the Fourier series 
coefficients in each case

•	 Find the Fourier half range and full range series 
representations of a given function in a finite interval

•	 Understand the periodic extensions of Fourier series

•	 Appreciate how an arbitrary non-periodic function can 
be represented by a Fourier transform

•	 Calculate the Fourier transform and inverse transform 
of a given function

•	 Prove the convolution theorem
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12.A. APPENDIX: STANDARD INTEGRALS

In this appendix, we gather together some standard integrals 
that are useful for Fourier series.
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0 if 0
sin sin

otherwise
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0

if 0
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otherwise
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(12.36)

 0 if 0
sin sin

otherwise
L

L
mn

m nn x m x
dx

LL L d−

= =
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∫
p p  

(12.37)
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cos cos
otherwise
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 (12.38)

 sin cos 0
L

L

n x m x
dx

L L−
=∫

p p  (12.39)

 ( ) d− π

−
=∫ 2 .

L i n m x L
nmL

e dx L  (12.40)

Derivation of Standard Integrals
The results for the standard integrals 12.35, 12.36, 12.37, 12.38, 

12.39 can be found using the product formulae for trigonometric 
functions.

For example, to obtain equation (12.35) we write

( ) ( )

( )
( )

0 0

0

1
sin sin cos cos

2

1
sin

2

L L

L

m n x n m xm x n x
dx dx

L L L L

m n xL
m n L

− + 
= − 

 

− π 
=  −  

∫ ∫
p pp p

p
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( )
( )

0

1
sin

2

L
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m n L
+ 

−  +  

p
p

( )0 if , all the sine terms are zero .m n= ≠

If m = n ≠ 0 then the integral becomes
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∫

To obtain equation (12.40) we have, if n ≠ m,

( )
( )

( )

( ) ( )

exp exp

( )
0,

L
L

L
L

i n m i n m

i n m x i n m xL
dx

L i n m L

L
e e

i n m
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−

− − −

    − −
=        −     

 = − −
=

∫

because exp(i(n − m)π) = exp(−i(n − m)π) = cos((n − m)π).

However, if n = m then

( )
exp

L L

L L

i n m x
dx dx

L− −

− 
= 

 
∫ ∫

p

          2 .L=
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12.21. EXERCISES

1. A function f(q), −p ≤ q ≤ p is known to have a Fourier series 
of the form

 ( ) ( )q q
∞

=

= +∑0
0

1
cos .

2 n
n

f a a n  (12.41)

 Show that f(q) = f(−q).

2. If the function f(q) is given in the range 0 ≤ q ≤ π to be 
f(q) = q sketch the extension of this function to the range 
−p ≤ q ≤ p if it is to have a Fourier series of the form 
(12.41). Sketch also the function represented by the 
Fourier series outside this range.

3. The function f(q) = q3, 0 ≤ q ≤ p is expanded in (a) a Fou-
rier sine series, and (b) a Fourier cosine series. Sketch the 
forms of the functions represented by these series in the 
range −3p ≤ q ≤ 3p.

4. Starting from the assumption that any function defined 
between −L and L can be expanded as a sum of sine and 
cosine functions,

 
( ) 0

1

1
cos sin ,

2 n n
n

n x n x
f x a a b

L L

∞

=

 = + + 
 

∑ p p

 derive the formulae for the Fourier coefficients, a0, an and bn.

5. The following functions are all defined in the range  
−L < x < L. For each of the functions, give the symmetry of 
the function and state whether the function can be expand-
ed as a half range sine series, a half range cosine series or 
whether it must be expanded as a full range Fourier series.

     (i) 1/(|x| + d),

   (ii) x3 sin(2x),

 (iii) exp(−4x),

  (iv) x exp(ax2),

    (v) ax4 + bx2 + c.
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12.22. PROBLEMS

1. Find the Fourier series for f(q) = q2, −p ≤ q < p, and by set-
ting q = 0, show that

( ) 12

2
1

1
.

12

n

n n

+∞

=

−
=∑p

2. Expand the function f(x) = x as a half range Fourier cosine 
series in the range 0 ≤ x < L.

 By considering the series for a suitable value of x, show that

( )

2

2
0

1
.

82 1n n

p∞

=

=
+

∑

 What function does the series represent in the range  
−L < x < L?

3. Expand the function f(x) = sin(px) as a half range Fourier 
cosine series in the range 0 ≤ x ≤ 1.

 By considering the series for a suitable value of x show that

( )
2

1

1 1
.

4 1 2 4

p

p p

∞

=

−
= −

−∑ p

4. If ( ) ( ) ( )( )1
2

f x h x h x= + −  and ( ) ( ) ( )( )1
2

g x h x h x= − − , 

show that f(x) is even and g(x) is odd.

 Derive the following results:

( )
( )

( ) ( )
0

0 if isodd

2 if iseven.

a
a

a

h x
h x dx

h x dx h x−

= 


∫ ∫
 Hint: first split the integral into two regions, a part from 

−a to 0 and a part from 0 to a, then change variable from x 
to x¢ = −x in the region where x < 0.
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5. Find the Fourier series for the function

( )
, 0
, 0 ,

f
a p q

q
b q p

− ≤ <
=  < <

 where a and b are constants. (Hint: the neatest approach 
is to write f(q) as the sum of a symmetric function and an 
antisymmetric one.)

 By setting q = π/2 show that

0

( 1)
2 1 4

n

n n
p∞

=

−
=

+∑

6. Find the Fourier series for

( )
sin ,

sin , 0 .
t t

f t
t t

− − < <0
=  < <

p
p

 Hence show that

2
2,4,6,

1 1
.

1 2n n

∞

=

=
−∑



7. Calculate the full range complex Fourier series representa-
tion of f(x) = x + x2.

8. Show that the Fourier transform of the function defined by 
f(x) = exp(−a2x) for x ≥ 0, f(x) = 0 otherwise, is 1/(ik + a2).

9. Calculate the inverse Fourier transform of F(k) = exp(−k2).





CHAPTER 13
INTRODUCTION TO 
VECTOR CALCULUS

In physics we are often concerned with physical properties that 
vary over some region of space, e.g. air temperature in a room, 
charge density through a solid body, velocity within a fluid. For 
these, we need to use the idea of a field. In this chapter we will 
discuss fields, and the most important differential operators that 
physicists use to work with fields. These are called grad, div and 
curl. Here we will study the mathematical definitions and some 
rules for manipulating fields and operations on fields, and we will 
begin to look into their geometrical interpretations. These will be 
crucial to your studies of physics, especially electromagnetic fields, 
but also fluid mechanics.

In this chapter, we will consider only three-dimensional space 
and use only Cartesian coordinate systems, i.e. using coordinates  
(x, y, z) and basis vectors i, j, k.

13.1. VECTOR FIELDS

A scalar field associates a scalar (a real or complex number) to 
each point in space. Let f(P) be a function defined on the points P 
in some region of three-dimensional space. For example f might be 
the temperature at each point in a room. Then f is called a scalar 
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field. In terms of the usual Cartesian coordinates a general point P is 
labeled by (x, y, z) and the scalar field f is the function f(x, y, z). So 
f takes as input a point in three-dimensional space, or equivalently 
three numbers for the coordinate values, and returns as output a 
single number.

x

z

1 2 3 4

2
3

4

x

y

(a) (b)

–1
0

1

–1 0

FIGURE 13.1: Two different ways to visualize a scalar field f(x, y). (a) A heat-map or intensity 
image, where the shade represents the value of f. (b) A surface plot where z = f(x, y) is the 
height of the surface.

You may wonder why, if f expressed in this way is just a familiar 
function, we go to the trouble of calling it a scalar field. The reason 
is to emphasize that a scalar field takes on values at the points in a  
region and these values do not depend on the coordinates used to 
label the points. For example, the temperature obviously depends 
on where you measure, but not on what system of coordinates you 
use to specify the point where you make the measurement. See  
Figure 13.1 for a visualization of a scalar field. Other examples of 
scalar fields are the air pressure in a room and the gravitational 
potential around a planet.

A vector field associates a vector to each point in space. Let V(P) 
be a vector defined on the points P in some region of space (see  
Figure 13.2); i.e. V associates a vector with each point. Then V is 
called a vector field. For example V might be the velocity at each 
point of a fluid. In terms of the usual Cartesian coordinates (x, y, z) 
the vector field has components (f(x, y, z), g(x, y, z), h(x, y, z)) for 
some functions f, g and h (each of which is a function of position). 
Instead of (f, g, h) we usually write
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FIGURE 13.2: A vector field V(x, y): a vector is defined at each point (x, y). Here, vectors are 
drawn as arrows at grid points.

 V = V(x, y, z) = (Vx (x, y, z), Vy (x, y, z), VZ (x, y, z)), (13.1)

the subscripts indicating that the components are along the x-, y- and 
z-axes (not to be confused with shorthand notation for the partial 
derivatives of a scalar V(x, y, z). If there is any danger of confusion, the 
derivatives would be denoted by V,x etc. with the additional comma.)

A vector field is simply a vector-valued function, i.e. an assign-
ment of a vector (three real numbers) to each point of a region of 
space. Examples of vector fields are the electric field in space and 
the velocity of fluid in a pipe.

Examples:

 •   A = (x, y, z) is a vector field with Ax = x, Ay = y, Az = z at the 
point (x, y, z).

 •  B = (x3, x2y, y2(z + 1)) is a vector field.
 •   V = (0, 0, 2) is a vector field with V equal to this constant 

value throughout space.

A large part of this chapter is devoted to discussing differential 
operations on scalar fields and vector fields–in other words, different 
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kinds of fields that can be constructed out of derivatives of other 
fields. Many of these involve the del operator or nabla symbol which 
is defined (in Cartesian coordinates) by

 
, , .

x y z

x y z

∂ ∂ ∂
∇ ≡ + +

∂ ∂ ∂

 ∂ ∂ ∂
≡  

∂ ∂ ∂ 

i j k

  
(13.2)

This is not a function; it is an operator, which means it is “waiting 
for a function” on which to operate. In the next few sections, we will 
see various ways in which it works.

13.2. THE GRADIENT OF A FUNCTION

Let f(x, y, z) be a scalar field. We now define the gradient of f, 
which is a new vector field, by

 
 ∂ ∂ ∂

∇ =  
∂ ∂ ∂ 

, , ,
f f f

f
x y z   (13.3)

or equivalently

 .
f f f

f
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

i j k   (13.4)

We take a scalar field f and make a vector field  ∇f out of the par-
tial derivatives of f. To emphasize that ∇f is a vector ∇ is often printed 
in bold or written as ∇. We read this as “grad f,” and sometimes it is 
also written as grad f. To get equation (13.3) we inserted the scalar 
function f into the “slots” in the del operator, equation (13.2).

Example 13.1 Let f(x, y, z) = xz; find ∇f and its value at the 
point P with coordinates (3, 2, 17).

According to the definition we have to work out the three 
partial derivatives. Recall that z is a constant for differentiation 
with respect to x etc. 
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Thus:

 
∂ ∂ ∂

= = =
∂ ∂ ∂

, 0, ,
f f f

z x
x y z   (13.5)

and so we have

	 ∇f = (z, 0, x).  (13.6)

Substituting the values of x, y and z at P = (3, 2, 17) gives

	 ∇f = (17, 0, 3).  (13.7)

Example 13.2 Let f(x, y, z) = (x2 + y2 + z2)1/2; find ∇f.

Once more, according to the definition, we have to work out 
the three partial derivatives of f. Using the chain rule (i.e “the 
function of a function” rule):

( ) ( )
∂

= × =
∂ + + + +

1 2 1 22 2 2 2 2 2

1 1
2 .

2
f x

x
x x y z x y z  

(13.8)

Note that there is no need to differentiate to get fy and fz in this 
problem. Since f is symmetrical in x, y and z, fy is obtained from 
fx by interchanging x and y in the numerator. (And similarly for 
fz.) Hence

( ) ( )
∂ ∂

= =
∂ ∂+ + + +

1 2 1 22 2 2 2 2 2
, and .

yf f z
y zx y z x y z  

(13.9)

Now, ∇f is a vector with three components:

( ) ( ) ( )
 
 ∇ =
 + + + + + + 

1 2 1 2 1 22 2 2 2 2 2 2 2 2
, , .

yx z
f

x y z x y z x y z
 (13.10)

We can extract a common factor from each component:

	 ∇f = (x2 + y2 + z2)−1/2(x, y, z).  (13.11)
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13.3. MAXIMUM RATE OF CHANGE

The gradient of a scalar field, ∇f, has a simple geometrical inter-
pretation. Its magnitude |∇f | gives the maximum rate of change of 
the function f and the vector ∇f points in the direction of this maxi-
mum rate of change.

Consider two neighboring points in three-dimensional space, 
with position vectors r = (x, y, z) and r + dr = (x + dx, y + dy, z + dz), 
and let f(x, y, z) be a function of position (a scalar field). We are 
going to calculate the change in the value of f as we pass from r to  
r + dr:

	 df = f(r + dr) − f(r).  (13.12)

To do this we add up the change in f as a result of first increasing 
x (to x + dx), then increasing y, and finally increasing z. (See Figure 
13.3 and compare the chain rule in Section 10.15.) The increase in 
f is

 

( ) ( ), , , ,

.

f f x x y y z z f x y z

f f f
x y z

x y z

d d d d

d d d

= + + + −
∂ ∂ ∂

≈ + +
∂ ∂ ∂   (13.13)

The approximation in the last line is sometimes known as the 
incremental approximation. This consists of the first order terms 
of the Taylor series for a function of three variables (x, y, z). (See  
Section 10.11.)

Let dr = uds where u is a unit vector and ds = |dr|. We can write 
equation (13.13), using the scalar product of vectors, as

 ( ) ( ), , , , = .
f f f

f x y z f f s
x y z

d d d d d d
 ∂ ∂ ∂

= ⋅ = ∇ ⋅ ∇ ⋅ 
∂ ∂ ∂ 

r u  
 

(13.14)

Exercise 13.1 Find the gradients of the following functions:

(i) f(x, y, z) = (x2 + y2 + z2)−1/2,

(ii) f(x, y, z) = exp(lx + my + nz) where l, m, n are constants.
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But the change in f is

df = (rate of change of f in direction u) ×  
 (distance between the two points). (13.15)
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FIGURE 13.3: Changes in f(x, y, z). We start at point r and end up at point r + dr by moving 
first along the x-axis, then the y-axis, and then the z-axis.

Comparing equations (13.14) and (13.15), and noting that ds is 
the distance between the two points, we see that

 (rate of change of f in direction u) = (∇f) · u. (13.16)

If a is the angle between the vectors ∇f and u, then equation 
(13.16) becomes (by the definition of the scalar product)

 (rate of change of f in direction u) = |∇f | cos(a), (13.17)

remembering that |u| = 1 (as it is a unit vector). Since 0 ≤ |cos(a)| ≤ 1, 
 from equation (13.17) we have
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 (maximum rate of change of f) = |∇f|,  (13.18)

and this will occur when a = 0, i.e. when ∇f and u are parallel. Hence

∇f gives the magnitude and direction  
 of the maximum rate of increase of f.  (13.19)

You have seen this before – take another look at section 10.3.

13.4. LEVEL SURFACES

Consider first a function of two variables f(x, y). The level curves 
are defined to be the curves f(x, y) = k for the various possible values 
of the constant k. They are the curves along which f(x, y) has a level, 
i.e. constant, value.

This idea is familiar from meteorology. If f = pressure, level 
curves are isobars; or if f = temperature, level curves are iso-
therms. And in geography, if f = height of land, level curves are 
contour lines.

The surface f(x, y, z) = k, with k a constant, is said to be a level 
surface of the function f(x, y, z). A set of level surfaces is generated 
by taking a range of values for k. The notion of level surface captured 
by this definition is not the same as the non-technical use of “level” to 
mean a “flat” surface – it is the function that is “flat,” not the surface.

Exercise 13.2 Find the direction of the maximum rate of 
increase of each of the functions in Exercise 13.1 at a general 
point (x, y, z).

Exercise 13.3 Given the scalar field f(x, y, z) = 3x + y2z2

(i) Find the magnitude of the maximum rate of increase of f,

(ii) Find the gradient of the field in the direction (2, 2, 2).
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FIGURE 13.4: Level curves of of the function from Figure 13.1.

Example 13.3 Find level surfaces of the function f(x, y, z) 
= z and show that ∇f is normal (i.e. perpendicular) to these 
surfaces at any point.

The level surfaces are the planes obtained as the constant runs 
through a range of possible values. On a level surface, f = constant. 
As f(x, y, z) = z, the level surfaces z = constant are planes parallel 
to the (x, y) plane. We now find ∇f. Remember that

 
=

∂ ∂
≡ =

∂ ∂ , const

0.
y z

z z
x x  

(13.20)

Here we have that f(x, y, z) = z, and so

	 ∇f = (fx, fy, fz) = (0, 0, 1).  (13.21)

The vector (0, 0, 1) points along the z-axis, and hence is normal 
to the (x, y) plane.
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13.5. NORMALS TO A SURFACE

The examples in the previous section are special cases of a gen-
eral relationship between level surfaces and the vector gradient:

∇f is always in a direction normal to the surface f = constant. 
 (13.22)

To see this, consider a scalar function f and a level surface 
f(x, y, z) = k. Now let r and r+dr be the position vectors of neigh-
boring points in the level surface. As they are both in the level 
surface, f(r) = k and f(r + dr) = k, the difference in f at the two 
points is zero, i.e. df = 0. Hence the directional derivative of f 
along the vector joining the points is df = ∇f · dr = 0. This means 
∇f is normal (i.e. perpendicular) to dr, hence is in the direction of 
the normal to the surface.

We have therefore shown that a unit normal to the surface  
f(x, y, z) = k is

 .
f
f

∇
=
∇

n   (13.23)

Note that 
f
f

∇
−
∇

 is also a unit normal to the surface (but it points 

in the opposite direction).

Exercise 13.4 Describe geometrically the level surfaces of the 
functions

(i) f = (x2 + y2 + z2)1/2,

(ii) f = x2 + y2,

(iii) f = lx + my + nz (l, m, n constants).

Exercise 13.5 For each of the functions in Exercise 13.4, show 
explicitly that ∇f is normal to the level surface at any point.
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FIGURE 13.5: Level curves and gradient vectors of of the function from Figure 13.1. Notice 
how the gradient vectors are perpendicular to the level curves (contours). Also notice how the 
gradients are larger (longer arrows) when the contours are closer together.

FIGURE 13.6: Surface defined by z = x2 + y2 – 1; see example 13.4.

Example 13.4 Find the outward pointing unit normal to the 
surface z = x2 + y2 − 1 at the point (1, 1, 1).



466 • Mathematical Physics

Begin by writing the surface in the form f = constant:

 f = z − x2 − y2 = constant = −1. (13.24)

See Figure 13.6. (We could equally choose to write f = z−x2−
y2+1 = constant = 0. The result would be unaffected.) Next, we 
find ∇f = (fx, fy, fz ):

	 ∇f = (−2x, −2y, 1).  (13.25)

The magnitude of ∇f is |∇f | = [(−2x)2 + (−2y)2 + (1)2]1/2, i.e.

 |∇f | = (4x2 + 4y2 + 1)1/2.  (13.26)

We have shown that ∇f/|∇f | and −∇f/|∇f | are unit normals, and 
so

 ( )
( )

 
 = ± − −
 + + 

n 1 22 2

1
2 , 2 ,1 .

4 4 1
x y

x y  
(13.27)

Next, we substitute the values of x, y and z at the given point 
(1, 1, 1):

 n = (−2/3, −2/3, 1/3) or (2/3, 2/3, −1/3). (13.28)

Since the surface expands outwards from the z-axis 
above z = −1, the outward normal points “down,” so is  
(2/3, 2/3, −1/3).

Exercise 13.6 Find the outward pointing unit normal to the sur-
face x2 + y2 = 8 at the point (2, 2, 1).

Exercise 13.7 Find the outward pointing unit normal to the sur-
face f(x, y, z) = x2 − y2 at the point (−20, −20, 0).
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13.6. THE DIVERGENCE OF A VECTOR FIELD

The divergence is another vector operator. The divergence oper-
ates on a vector field and produces a scalar field. (Compare grad 
which operates on a scalar field and produces a vector field.) The 
divergence of A(x, y, z), which is read and sometimes also written 
as “div A,” is

 ,yx z
AA A

x y z

∂∂ ∂
∇ ⋅ = + +

∂ ∂ ∂
A   (13.30)

where Ax, Ay and Az are the components of A, which are functions 
of position (x, y, z).

Look at this expression carefully. The x component of A, Ax, is 
differentiated with respect to x, the y component with respect to y 
etc. and the results added together to give one function (i.e. a scalar).

There is a reason why we write the divergence using the nabla 
and dot product symbols. Let’s write ∇ and A as vectors and multiply 
as if taking a dot product.

 

( ) ∂ ∂ ∂
∇ ⋅ = + + ⋅ + + 

∂ ∂ ∂ 
∂∂ ∂

= + +
∂ ∂ ∂

.

x y z

yx z

A A A
x y z

AA A
x y z

A i j k i j k

 
 

(13.31)

We have used the results for the dot products of the basis vec-
tors: i · i = 1, i · j = 0, and so on.

Exercise 13.8 Show that the unit normal to the surface  
f = z − g(x, y) = 0 is

 
    ∂ ∂ ∂ ∂  ± − + +     ∂ ∂ ∂ ∂     

1 222

, , 1 1 .
g g g g
x y x y

 (13.29)



468 • Mathematical Physics

–4 –2 0 2 4
x

–4
–2

0
2

4
y

FIGURE 13.7: The vector field r = (x, y, z) shown in the plane z = 0. See Example 13.5.

Example 13.5 Let r = (x, y, z). Find ∇ · r.

First, identify the three components of the vector field,

 rx = x, ry = y, rz = z. (13.32)

Now work out the required partial derivatives:

 1, 1, 1.yx z
rr r

x y z

∂∂ ∂
= = =

∂ ∂ ∂  (13.33)

Finally, substitute in the definition of ∇ · A:

 ∇· r = 1 + 1 + 1 = 3. (13.34)

The answer is always a scalar function, in this case a constant. 
The vector field r = (x, y, z) is simply the radius vector at each 
point (Figure 13.7).
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We can think of divergence as representing the “spreading 
out” of a vector field. Negative divergence at a point means the 
vector field converges at that point. If V(x, y, z) is a vector field 
representing the velocity of a fluid, then its divergence at any 
point ∇· V is the outward flow of fluid (per unit volume) at that 
point (evaluated over an infinitesimal volume around the point). 
Negative divergence means there is a net inflow (convergence 
at the point), and zero divergence means the inflow and outflow 
balance.

Example 13.6 Let A = (x3, x2y, y2(z + 1)). Find ∇ · A at the 
point (1, 0, 0).

First we identify the three components of the vector field

 Ax = x3, Ay = x2y, Az = y2(z + 1). (13.35)

Next, work out the required partial derivatives

 
2 2 23 , , .yx z

AA A
x x y

x y z

∂∂ ∂
= = =

∂ ∂ ∂  (13.36)

Now we can determine the divergence of A:

	 ∇	· A = 3x2 + x2 + y2 = 4x2 + y2 (13.37)

and the answer is a single function. We now substitute for (x, y, z) 
 at the given point; i.e. we let (x, y, z) = (1, 0, 0) in ∇· A and so

	 ∇	· A = 4 × 12 + 02 = 4.  (13.38)

Exercise 13.9 Find the divergence of the following vector fields:

(i) A = (yz, xz, xy),

(ii) B = (x2 + y2 + z2)n/2(x, y, z) (i.e. B = rnr),

(iii) F = ∇ φ for some function φ(x, y, z).
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13.7. CURL OF A VECTOR FIELD

Another vector operator is curl. The curl of a vector field is 
another vector field. The curl of a vector field A, which is read and 
sometimes written “curl A,” is

 
∂ ∂ ∂ ∂ ∂ ∂

∇× = − − − 
∂ ∂ ∂ ∂ ∂ ∂ 

, ,y yz x z x
A AA A A A

y z z x x y
A  (13.39)

or equivalently

 
∂ ∂   ∂ ∂ ∂ ∂ ∇× = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    

.y yz x z x
A AA A A A

y z z x x y
A i j k

 
(13.40)

Look at the definition carefully. The x component of the curl 
of A involves derivatives of the z and y components of A with 
respect to y and z, respectively, and so on cyclically. The result 
is a vector field (three components, each in general a function of  
x, y and z).

There is a reason we write curl using the nabla and vector (cross) 
product symbols. Let’s write ∇ and A as vectors and work out the 
components of their cross product

 

( ) ∂ ∂ ∂
∇× = + + × + + 

∂ ∂ ∂ 
∂ ∂   ∂ ∂ ∂ ∂ = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    

.

x y z

y yz x z x

A A A
x y z

A AA A A A
y z z x x y

A i j k i j k

i j k

 
(13.41)

using the usual rules for vector (cross) products (see Section 4.4). 
This is the same as equation (13.40).
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Example 13.7 Let A = (3xz, 2yz, −z2); find ∇ × A.

First, identify the components of A:

 Ax = 3xz, Ay = 2yz, Az = −z2. (13.42)

We now work out each of the components of ∇ × A. For the x 
component:

 
( )

∂∂
∇× = − = − = −

∂ ∂
0 2 2 ;yz

x

AA
y y

y z
A

 
(13.43)

while for the y component:

  
( ) 3 0 3 ;x z

y

A A
x x

z x
∂ ∂

∇× = − = − =
∂ ∂

A
 

(13.44)

and finally for the z component:

  
( )

∂ ∂
∇× = − = − =

∂ ∂
0 0 0.y x

z

A A
x y

A
 

(13.45)

Thus we have that ∇ × A = (−2y, 3x, 0). It is a vector field 
so has three components each of which is a function of x, y 
and z.

Exercise 13.10 Find the curls of the following vector fields. In 
each case begin by identifying explicitly the components of the 
vector for which the curl is required.

(i) (1+ x2, xy, y(z + 1)),

(ii) (a · r)a where r = (x, y, z) and a = (ax, ay, az) is a constant 
vector,

(iii) w × r where r = (x, y, z) and w = (wx, wy, wz) is a constant 
vector.
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FIGURE 13.8: Two examples of vector fields plotted with the z-axis suppressed. (a) The vec-
tors always lie along the x-axis with y-and z-components zero. The curl is therefore zero every-
where. If we placed a small paddle wheel in the field it would not be made to rotate. (b) The 
vectors change direction as we move around the space; if we placed a paddle wheel anywhere 
in the field it would begin to rotate clockwise. For example, at the point (2, 0) there is a stron-
ger “current” on the right than on the left side. This means there is a non-zero curl; at any 
point the curl vector here points into the page in agreement with the “right hand screw rule” 
(see last paragraph in Section 13.7).

Example 13.8 Let A = (3xz, 2yz, −z2) as in example 13.7. 
Verify that ∇ · ∇ × A) = 0.

We worked out ∇ × A in example 13.7 so we just quote it here. 
We will call the resulting vector field B:

 B = ∇ × A = (−2y, 3x, 0). (13.46)

As B is a vector field we can take its divergence,

( )
∂∂ ∂

∇ ⋅ ∇× = ∇ ⋅ = + + = + + =
∂ ∂ ∂

0 0 0 0.yx z
BB B

x y z
A B

  
(13.47)

Exercise 13.11 Show that ∇ · (∇ × A) = 0 for any vector field A.
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A vector field with zero curl is said to be irrotational or curl 
free. The result of Exercise 13.12 shows that any vector field that 
is the gradient of a scalar field is irrotational. In fact, although we 
shall not show it here, the converse of this also holds: if E is a vec-
tor field such that ∇ × E = 0, then it is always possible to find a 
scalar field f such that E = ∇f. This is another important result for 
theoretical physics.

We will return to the geometrical interpretation of curl a little 
later. But for now we can think of the curl of a vector field at a 
point as representing the amount of “circulation” of the field about 
that point. If V(x, y, z) is a vector field representing the velocity of 
a fluid, then its curl ∇ × V at any point is a measure of the angular 
velocity of the fluid about that point. Imagine holding a tiny paddle 
wheel at a point in the fluid (Figure 13.8). If the curl is zero, the 
paddle wheel would not rotate at that point. If the paddle wheel 
rotates, the curl there is non-zero. The direction of the curl follows 
the “right hand screw rule”: if you curl the fingers of your right 
hand in the direction of the circulation, your thumb will point in 
the direction of positive curl.

13.8.  FLUX OF A VECTOR FIELD THROUGH A 
SURFACE

In this and the next section, we will introduce two important 
quantities associated with vector fields: flux and circulation. Here 
we will try to emphasize what these mean, and also show how they 
can be calculated for simple plane geometries.

Exercise 13.12 Show that ∇ × ∇f = 0 for any scalar field f.

In fact, although we shall not show it here, the converse also 
holds: if B is a vector field such that ∇ · B = 0, then it is always pos-
sible to find a vector field A such that B = ∇ × A. This is an impor-
tant result for theoretical physics.
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x
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FIGURE 13.9: The flux of a field through a plane surface.

Flux1 is the amount of “something” passing through a surface. 
If the vector field is the velocity of a fluid, then flux is the flow rate 
through the surface. We can also consider heat flux (the rate of heat 
energy transfer through a surface), and electric flux, which we can 
think of as the number of electric field lines passing through a sur-
face (although notice that nothing is actually flowing in this case).

The flux depends on the vector field and the size, shape and 
location of the surface. If the vector field is stronger (faster moving 
fluid, stronger electric field etc.) then the flux will be higher; if the 
surface is made larger or oriented better to “catch” more of the field, 
then the flux will be higher. Imagine catching fish with a fishing net: 
a larger area fishing net will catch more fish, and moving the fishing 
net to a region with a higher density of fish will catch more fish.

First, a simple example. Let B = (b(x), 0, 0) be a vector field in 
the x-direction, with b(x) depending only on x. Let S be a rectangular 
surface of area A at x = x0, aligned normal to the positive x-axis, as in 
Figure 13.9. The flux of the vector field B through the surface S is

 (flux of B through X) = Area × field strength = Ab(x0). 
 (13.48)

1The word flux is from the Latin fluere meaning “to flow” and was intro-
duced into calculus by Newton’s use of the word fluxion to mean derivative.
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More generally, if

 B(x, y, z) = (Bx, By, Bz)  (13.49)

where each of Bx, By and Bz depends on position, then the flux of B 
through X is defined as an integral over the surface X,

 
( ) ( )0flux of through , , .x

X

X B x y z dydz= ∫∫B  (13.50)

The flux of a vector field through a surface is defined as the inte-
gral of the normal component of the field over the surface. Later we 
shall find an alternative way to calculate the flux through a closed 
surface.

Exercise 13.13 Write down the integral analogous to equation 
(13.50) defining the flux of the vector field B(x, y, z) through the 
rectangle Y normal to the y-axis, cutting the y-axis at y = y0.

Note that to calculate the flux through a surface we need to 
be given the direction of the positive normal to the surface. In the 
examples below, we take this along the positive coordinate axes.

X

x

y

z

1

1

FIGURE 13.10: The surface X.
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Example 13.9 Calculate the flux of the vector field  
B = ((1 + x)−1, (y + x), 0) through the surface X, in the (y, z) 
plane bounded by the lines y = 0, y = 1, z = 0, z = 1.

When tackling problems like this, it is often helpful to draw the 
region of integration. This is done in Figure 13.10. We start 
from the definition. The component of B normal to the surface 
X is the component Bx. The element of area in X is dydz, so

 
= ∫∫flux .x

X

B dydz
  

(13.51)

For a general value of z in X, y runs between 0 and 1. Within X, z 
 runs between 0 and 1. So these are the limits of integration:

 
= ∫ ∫

1 1

0 0
flux .xB dydz

  
(13.52)

Next substitute for Bx. On the surface X we have x = 0, so  
B = (1, y, 0) on X. Thus Bx = 1. This leaves a simple double integral:

[ ]
1 1 1 11 1

000 0 0 0
flux 1 1 1.dydz y dz dz z= = = = =  ∫ ∫ ∫ ∫  

(13.53)

The field has 1 unit of flux through X.

Example 13.10 Using the same vector field as in Example 
13.9, calculate the flux through the surface Y in the (x, z) plane 
bounded by the lines x = 1, x = 2, z = 0, z = 1.

The component of B normal to Y is By. The element of area in 
Y is dxdz. Thus we have that

 
= ∫∫flux .y

Y

B dxdz
  

(13.54)

To cover Y, x runs between 1 and 2 and z between 0 and 1, so

 
=∫ ∫

1 2

0 1
flux .yB dxdz

  
(13.55)
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On the surface Y (in the (x, z) plane) y = 0, so B = (1/(1 + x), x, 0) 
 and By = x. This leaves a standard double integral:

 

( ) 
= = = − 

 

= =

∫ ∫ ∫ ∫

∫

221 2 1 1
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0

1
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2 2

3 3
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dz
 

 

(13.56)

The field has 3/2 units of flux through Y.

Example 13.11 Calculate the flux of the vector field  
B = (ye−x, 1, 0) through the surface X in the (y, z) plane bounded 
by the lines y = 0, y = 1, z = 0, z = 1.

The component of B normal to the surface X is Bx, and so

 
= ∫∫flux .x

Y

B dydz
 

(13.57)

The surface of integration is the square 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 so 
these are the limits of integration. The surface lies at x = 0, 
in the (y, z) plane, and so Bx = ye0 = y. This gives a standard 
double integral:

 

 
= = = = 
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1 1 1 1

0 0 0 0
0

1 1
flux .

2 2 2
y
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(13.58)

Exercise 13.14 Calculate the flux of the vector field (x3 + 1, yz, 2) 
 through

(i)  the surface X1, in the y-z plane bounded by the lines y = 0, 
y = 1, z = 0, z = 1,

(ii)  the surface X2, in the plane x = 1 bounded by the lines y = 0, 
y = 1, z = 0, z = 1.

(iii) Hence obtain the difference in the fluxes through X2 and X1.
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13.9. CIRCULATION OF A VECTOR FIELD

The circulation of a vector field around a loop (closed curve) 
is defined as the integral of the tangential component of the vec-
tor field along the loop. If the vector field represents the force on 
a body, then the circulation represents the work done by the force 
in moving the body around the loop. There are many other physical 
applications in electro-magnetism and fluid mechanics.

Let’s see an example. We have a vector field V = (u(y), v(x), 0) 
where, for the moment, u depends on y only and v depends on x 
only. Let PQRS be a rectangle in the (x, y) plane; sides PS and QR 
have length (x2 − x1) and PQ and SR have length (y2 − y1) (Figure 
13.11). We are going to define the circulation of V around the rect-
angle PQRS in the counterclockwise direction.2

P

Q R

S

y2

x

y
u(y2)

u(y1)

 v

u

V

y1

x1 x2

FIGURE 13.11: The rectangle PQRS. Above is shown the vector V at a point, and its compo-

nents in the x-and y-directions.

We define the contribution from the side RQ to the circulation 
of the vector field V around the rectangle to be

(length of RQ) × (tangential component of V along 


RQ )

 = (x2 − x1) × (−u(y2)), (13.59)

2The direction is chosen to follow the right hand screw convention with 
respect to the (x, y, z) coordinate system.
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where the minus sign for u arises because the tangential component 
of V is positive in the direction QR, opposite to RQ. Similarly, for the 
contribution from PS,

(length of PS) × (tangential component of V along PS


) 
= (x2 − x1) × u(y1).

The net contribution of the pair of sides QR and SP is

 (x2 − x1)(u(y1) − u(y2)). (13.60)

Similarly, from the pair of sides QP and SR we get a net 
contribution

(y2 − y1)(−v(x1) + v(x2)).

The circulation of V around PQRS (i.e. around the sides in the 
order RQ, QP, PS, SR) is the sum of these net contributions:

circulation = (x2 − x1)(u(y1) − u(y2)) + (y2 − y1)(v(x2) − v(x1)) 
= (x2 − x1)u(y1) + (y2 − y1)v(x2) − (x2 − x1)u(y2) − (y2 − y1)v(x1).

 (13.61)

To extend this to more general vector fields with tangential com-
ponents that vary along an arc we replace the products (length) × 
(tangential component) by an integral.

For a vector field V = (Vx,Vy, VZ) we define the contribution to 
the circulation from RQ to be

 
( ) ( )1 2

2 1
2 2, , 0 , , 0

x x

x xx x
V x y dx V x y dx= −∫ ∫   

(13.62)

(replacing Equation 13.59). We have put z = 0 in Vx because we have 
assumed above that PQRS lies in the z = 0 plane. The contribution 
to the circulation from PS is

 
( )∫

2

1
2, ,0 .

x

xx
V x y dx

 
(13.63)
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The net contribution from PQ and RS is

 
( ) ( )( )2

1
2 1, , 0 , , 0

x

x xx
V x y V x y dx− +∫   

(13.64)

(replacing Equation 13.60). The total circulation of V around PQRS 
is therefore
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(13.65)

Example 13.12 Calculate the circulation of the vector field  
V = (1+x2, xy, y(z + 1)) around the unit square in the first 
quadrant of the (x, y) plane having one vertex at the origin 
(Figure 13.12).

The circuit PQRS is in the (x, y) plane, meaning z = 0. The simplest 
way to get the signs right is to let the limits take care of them.

On RQ the tangential component of V is Vx = (1 + x2), and x 
runs between 1 (lower limit) and 0 (upper limit). So, the 
contribution to the circulation from RQ is

( ) ( )= + = − +∫ ∫
0 12 2

1 0
circulationfrom 1 1 .RQ x dx x dx

P

Q R

S

1

1

x

y

FIGURE 13.12: The square PQRS (see Example 13.12).
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On QP the tangential component of V is Vy = xy = 0 since x = 0, so

= =∫
0

1
circulationfrom 0. 0.QP ydy

On PS the tangential component of V is Vx = (1 + x2), so

 
( )= +∫

1 2

0
circulationfrom 1 .PS x dx

  
(13.66)

On SR the tangential component of V is Vy = xy = y since x = 1 
on SR; y runs between 0 and 1 and so

= ∫
1

0
circulationfrom .SR ydy

The net circulation from PQRS is the sum of these contributions 
around the loop,

( ) ( )= − + + + +∫ ∫ ∫
1 1 12 2

0 0 0
circulation 1 1 .PQRS x dx ydy x dx

The contributions from QR and SP cancel since Vx is not a 
function of y, and so

 
= = = 

 
∫

12
1

0
0

1
circulation .

2 2
y

PQRS ydy

Exercise 13.15 Find the (counterclockwise) circulation of the 
vector field

V(x, y, z) = (1 + x2, xy, y(z + 1))

around the unit square in the (x, y) plane, centered on the origin 
with sides parallel to the axes.
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13.10.  DIVERGENCE THEOREM  
(GAUSS’S THEOREM)

We have defined two physically important quantities associated 
with vector fields–the divergence and the flux through a surface. 
For a special type of surface, namely a closed surface, these two are 
related. The relation between them is called the divergence theo-
rem, also known as Gauss’s theorem. The aim of this section is to 
derive this theorem for some special cases.

We start by considering a vector field B and a closed surface S 
enclosing a volume V. The divergence theorem says the flux of B 
(outwards) through the closed surface is equal to the integral of the 
net divergence inside the volume

 
∆ ∇ ⋅∫ Bflux= .

V
dV

  
(13.67)

Example 13.13 Verify the divergence theorem for a simplified 
case in which B = (b(x), 0, 0) is a vector field in the x-direction, 
with b(x) depending only on x, and V is a cuboid with faces  
X1 and X2 of areas A perpendicular to B.

The normal component of B on X2 is Bx = b(x2). The flux of B 
through X2 is

 
( ) ( ) ( )= =∫∫ ∫∫ 2

2
2 2 2 .

X X
b x dydz b x dydz Ab x

 
(13.68)

since Bx is constant on X2. Similarly the flux of B through X1 into 
V is (area)×(normal component) since the normal component 
Bx is constant on X1, thus

 flux through X1 = Ab(x1).  (13.69)

The net flux out of the volume is the sum of the net flux out of 
each face. As the vector field is along the x-direction, crossing 
only the surfaces X1 and X2, these are the only faces with  
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non-zero flux. Therefore the net flux is the difference of the 
flux out of X2 and the flux into X1, i.e.

 Δflux = A(b(x2) − b(x1)). (13.70)

We want to relate the expression for Δflux to ∇· B, so we bring 
in derivatives of b(x):

 

∂
∆

∂∫
2

1

flux= .
x

x

b
A dx

x   
(13.71)

However, since
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where Bx = b(x), By = 0 and Bz = 0, so
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We can write
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(13.74)

Then
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or

 
∆ = ∇ ⋅ = ∇ ⋅∫ ∫ ∫ ∫
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flux .
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dxdydz dVB B

 
(13.76)

This example shows us the physical meaning of the divergence 
of a vector field. The divergence of a field gives the rate per unit 
volume at which flux is being gained or lost from a point. If we 
think of a vector field as a fluid flowing through space (the arrows 
representing the velocity at each point) then we gain or lose flux 
where there are sources or sinks of the fluid. At a point where  
∇ · B = 0 there are no sources or sinks. And if there are no sources 
or sinks inside a volume, then ∇ · B = 0 everywhere inside, and the 
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divergence theorem tells us that the net flux through the surround-
ing surface is also zero.

More generally, if B = (b(x, y, z), 0, 0) the definition of the flux 
of B through the rectangle X2 gives

( )2 2

1 1
2 2flux of through the plane surface , ,

z y

z y
X b x y z dydz= ∫ ∫B

 
 (13.77)

and similarly for X1. Now the difference in flux between X2 and X1 is

 
( ) ( )2 2

1 1
2 1flux , , , , .

z y

z y
b x y z b x y z dydz ∆ = − ∫ ∫   

(13.78)

x

z

y

FIGURE 13.13: Flux through a closed surface.

Example 13.14 Verify the divergence theorem for the case in 
which B = (Bx, By, Bz) is a general vector field (with components 
in all three directions each of which is a function of x, y and z), 
and V is a cuboid with faces X1, X2, Y1, Y2, Z1, Z2 perpendicular 
to the x-, y- and z-axes.

We calculate the flux through each of the six faces of the 
rectangular parallelepiped (cuboid) in Figure 13.13. For each 
pair of faces we write down an equation like equation (13.78). 
So, for faces X1 and X2,
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We have therefore obtained the divergence theorem for a gen-
eral vector field, but only for a cuboidal volume. In fact, although 
we shall not prove it, the theorem holds for general vector fields and 
general volumes. It is usual to write the flux through a surface S in 
a notation that indicates its origin as an integral of the vector field 
over an area.

   

( ) ( ) ( ) ∆ = − 

∂ =  ∂ 

∫ ∫

∫ ∫ ∫

2 2

1 1

2 2 2

1 1 1

2 1flux , , , ,

.

z y

x xx z y

z y x
x

z y x

B x y z B x y z dydz

B
dx dydz

x
 

(13.79)

Similarly

 ( )
∂

∆ =
∂∫ ∫ ∫

2 2 2

1 1 1

flux .
z x y y

y z x y

B
dydxdz

y
 (13.80)

and

 ( ) ∂
∆ =

∂∫ ∫ ∫
2 2 2

1 1 1

flux .
y x z

z
z y x z

B
dzdxdy

z
 (13.81)

The flux out of the volume V is the sum of the net flux through 
each pair of faces:

( ) ( ) ( ) ( )= ∆ + ∆ + ∆flux out of flux flux flux ,
x y z

V
 (13.82)

 

2 2 2

1 1 1

,

z x y yx z

z x y

V

BB B
dxdydz

x y z

dV

∂ ∂ ∂
= + + 

∂ ∂ ∂ 

= ∇⋅

∫ ∫ ∫

∫ B
 
(13.83)

where we change the order of integration in equations (13.80) 
and (13.81).
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In this notation the divergence theorem becomes

 ⋅ = ∇ ⋅∫ ∫ ,
S V

d dVB S B  (18.84)

where S is a surface enclosing the volume V.

The divergence theorem therefore tells us that we can calculate 
the flux of a vector field through a closed surface if we know what it 
is throughout the whole interior volume. It relates a surface (two-
dimensional) integral to a volume (three-dimensional) integral. It says 
that if we know the flux of a field through a closed surface, which can be 
obtained from the value of the field only on the surface, we can deduce 
the net sources and sinks of the field within the enclosed volume.

13.11. STOKES’S THEOREM

We have defined–two other physically important quantities asso-
ciated with vector fields the curl of the field and its circulation around 
a closed loop. These two are also related to each other. The relation 
between them is called Stokes’s theorem.	The aim of this section is to 
derive this theorem for some special cases.

Exercise 13.16 Evaluate the flux of the vector field F = (x3, x2y, 
y2(z + 1)) through the closed surface of the unit cube bounded by 
the six planes x = 0, x = 1, y = 0, y = 1, z = 0 and z= 1

(i) directly by evaluating the six surface integrals,

(ii) by integrating (∇·F) over the volume of the cube. Hence 
verify the divergence theorem in this case.

Exercise 13.17 Use the divergence theorem to calculate the flux 
of the vector field

F(x, y, z) = (xz, y3, xy)

through the closed surface of the unit cube bounded by the six 
planes x = −1, x = 0, y = −1, y = 0, z = −1 and z = 0.
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Example 13.15 Let S be a closed rectangle in the (x, y) plane 
with sides parallel to the axes and perimeter C. Show that the 
circulation of a vector field V around C is given by the flux of  
∇ × V through S.

The circulation around C ≡ PSRQ is found from the sum of the 
contributions from the four sides,

( ) ( )( )
( ) ( )( )

2

1

2

1

2 1

2 1

, , 0 , , 0

, , 0 , , 0 .

Q P S R

x y x yR Q P S

x

x xx

y

y yy

PQRS V dx V dy V dx V dy

V x y V x y dx

V x y V x y dy

= + + +

= −

+ −

∫ ∫ ∫ ∫

∫

∫
Now

( ) ( ) ( )∂
− =

∂∫
1

2
2 1, ,0 , ,0 , ,0

y
x

x x y

V
V x y V x y x y dy

y
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( ) ( ) ( )
∂

− =
∂∫
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1
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x y
y y x

V
V x y V x y x y dx

x
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∂∂
= − +

∂ ∂

∂ ∂
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∫ ∫ ∫ ∫

∫ ∫

2 2 2 2

1 1 1 1

2 2

1 1
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.

x y y x yx

x y y x

x y y x
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VV
dydx dxdy

y x

V V
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x y

Making use of the fact that the integrand is the same as the  
z−component of the curl ∇ × V (see Equation 13.39) we have 
that

 
( )= ∇×∫Circulationof round .

zS
C dAV V

 
 (13.85)

The integration in the final expression is over the area of the 
plane rectangle S.
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The equality (13.85) is known as Stokes’s theorem	 (for a plane 
area). Stokes’s theorem enables us to express the circulation of a vec-
tor field around a closed curve as an integral of the curl of the vector 
field over the area enclosed by the curve.

 
( ) .

C S
d d⋅ = ∇× ⋅∫ ∫V l V S

  
(13.86)

The physical meaning of the curl of a vector field is therefore 
that it gives the rate per unit area at which the circulation changes 
(roughly speaking, the ‘‘vorticity’’ of the vector field). We have not 
here proved the result for a general vector field, only for a plane 
rectangle. But in fact, the theorem holds for most open surfaces3 one 
encounters in physics, even surfaces with holes. It is usual to write 
the theorem in a way that emphasizes this:

  
( )circulation .

zS
dS= ∇×∫ V

 
(13.87)

On the right side we have the flux (of ∇ × V) through a gen-
eral surface, which involves the integral of the normal component of  
∇ × V through a general surface S that has unit normal n. On the left 
side the circulation is written as the integral of the tangential com-
ponent (the scalar product of V with a element of length dl tangent 
to the curve C) around the closed curve C that is the boundary of S. 
The circle on the integral symbol is the conventional way of indicat-
ing that the curve C must be closed (otherwise the equation is false).

3Provided they are orientable–roughly speaking, that they have two sides 
and so one can define a consistent choice of normal vectors to the surface 
at every point, unlike a Möbius strip.

Example 13.16 By using Stokes’s theorem, compute the 
circulation of the vector field V = (1 + x2, xy, y(z + 1)) around 
the unit square S in the first quadrant of the (x, y) plane having 
one vertex at the origin.

By Stokes’s theorem we can work out the circulation as an 
integral of the curl of A over S:
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( )circulation .
zS
dS= ∇×∫ V

We have already worked out ∇ × V in Exercise 13.10:

∇ × V = (z + 1, 0, y).

The integrand is the z–component of ∇ × V on the surface S:

(∇ × V)z = y.

So we have

( )
1 1 1 1

0 0 0 0
circulation= V ,dxdy ydxdy∇× =∫ ∫ ∫ ∫z

and so
1 1

0 0

1 1
circulation= 1 .

2 2
dx ydy = × =∫ ∫

This agrees with the direct calculation of the circulation in 
Exercise 13.12.

Exercise 13.18 Use Stokes’s theorem to show that the circula-
tion of the vector field

V(x, y, z) = (1 + x2, xy, y(z + 1))

around the unit square in the (x, y) plane, centered on the origin, 
is zero.

Exercise 13.19

(i) The steady drift of a straight section of river can be described 
by the velocity field

 v = νi.   (13.88)

  A lobster pot consisting of a cube of side 1m (designed by a 
physicist!) is immersed in the water with all its sides parallel 
or perpendicular to the flow. Write down the flux of v into 
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13.12. EXTENSIONS: INDEX NOTATION

We can write compact expressions for the vector operators using 
the index notation introduced in Section 4.15. Thus

( ) ∂
∇ =

∂i
ix
f

f

gives the components of the gradient of the function ø(x1, x2, x3). 
The divergence and curl of a vector field A(x1, x2, x3) are given by

each of the sixsides and hence the net flux into the cube. 
Verify this result using Gauss’s divergence theorem.

(ii) The pot is now moved to a section of the river approaching 
a weir where the water is speeding up with a constant accel-
eration a, so the velocity field becomes

 v = (ν0 + 2ax)1/2i,  (13.89)

  where υ0 is the velocity at x = 0. If the pot is placed in the 
same orientation as before with its center at x = 10.5m, write 
down the flux into each face and the net flux into the cube. 
Again verify this result using Gauss’s theorem.

(iii) What is the circulation of v around the top face of the pot in 
the two locations? Verify these results using Stokes’s theorem.

(iv) The pot is placed near an outcrop where the flow is dis-
turbed and the velocity field is given by

 v = (ν + t1y)i + t2yj,  (13.90)

  where y = 0 corresponds to the riverbank. If the pot is placed 
in the same orientation as before with its center 1.5m away 
from the riverbank, work out the circulation of v around the 
top face. Verify this result using Stokes’s theorem.
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( )

i

i

k
ijki

j

A
x

A
x

Œ

∂
∇ ⋅ =

∂
∂

∇× =
∂

A

A

using the notation of Section 4.15. Once one gets the hang of this nota-
tion the derivation of vector identities becomes a mechanical process.

13.13. EXTENSIONS: OTHER COORDINATES

In Cartesian coordinates, the distances between neighboring 
points along the coordinate axes are dx, dy and dz along the x-, y- 
and z-axes, respectively. In other coordinate systems the distances 
between points are more complicated. For example, in spherical polar 
coordinates the physical distance on the sphere of radius r between 
points at the same latitude q separated by a coordinate increment dø 
is not dø (which is not a distance) but r sin(q)dø. This leads to more 
complicated expressions for the gradient, divergence and curl of a 
vector field in non−Cartesian coordinates.

In a general orthogonal coordinate system (ξ1, ξ2, ξ3) we let the 
distances between neighboring points be ds1 = h1dξ1, ds2 = h2dξ2 
and ds3 = h3dξ3. This defines (h1, h2, h3). (So, for example, in spher-
ical polars h3 = r sin(q).) Then

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
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2 3 1 1 3 2 1 2 3
1 1 2 2 3 3
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∇ =  ∂ ∂ ∂ 

∂ ∂ ∂
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In particular, in cylindrical coordinates (r, q, z) we have (h1, h2, h3) 
= (1, r, 1) and in spherical polars (r, q, ø), (h1, h2, h3) = (1, r, r sin(q)).

Revision Notes

After completing this chapter you should be able to

•	  Understand the difference between scalar fields  
f(x, y, z) and vector fields A(x, y, z) = (Ax, Ay, Az)

•	  Calculate the gradient

∇f = (∂f/∂x, ∂f/∂y, ∂f/∂z)

  of a scalar field f(x, y, z) and use it to find the rate of 
change, u · ∇f, of a field f in a given direction u, and the 
unit normal, n = ±∇f/ |∇f |, to the surface f = constant

•	  Calculate the divergence	of A, a scalar, given by

∂∂ ∂
∇ ⋅ = + +

∂ ∂ ∂
yx z

AA A
x y z

A

•	  Calculate the curl	of A, a vector field,

∂ ∂ ∂ ∂ ∂ ∂
∇× − − − 

∂ ∂ ∂ ∂ ∂ ∂ 
, ,y yz x z x

A AA A A A
z y x z y x

A

•	   Calculate, for a closed rectangular box S, the flux	of A out 
of S

 A d⋅∫ S  = sum of fluxes of A out of each face

•	  State the divergence theorem	(Gauss’s theorem):

⋅ = ∇ ⋅∫ ∫S V
d dVA S A
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13.14. EXERCISES

1.  Find the gradient of the function f (x, y, z) = x2 + 2xyz + z2  
in the direction parallel to the vector (1, −1, 2) at the point 
(0, 2, 3).

2.  Find expressions for the divergence and the curl of the vec-
tor function

A(x, y, x) = zexyi + xexyj + yexyk.

3.  Calculate the flux of the vector field E = (y3, x2y, y2z) 
through a rectangular surface with corners at (0, 0, 0),  
(0, 0, −2), (0, 1, 0) and (0, 1, −2).

  where V is the volume interior to S, and explain 
the meaning of the terms with reference to simple 
examples

•	  Compute, for a closed rectangular curve C, the circulation 
of A around C:

C
d⋅∫ A 1 = sum of integrals along each edge of C.

•	  State Stokes’s theorem:

( )⋅ = ∇× ⋅∫ ∫C S
d dA l A S

= flux of ∇ × A through interior of the closed curve C

and explain the meaning of the terms with reference to simple 
examples.
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4. Find the divergence of the vector field
2

2 2
z y

x xy
x

= + −A i j k

 at the point (1, 2, 3).

5.  A curve C in the form of a closed unit square spans a plane 

area S which has a unit normal n̂ (so ˆ ˆd dS=n S n ). Evalu-

ate (a) 
C

d∫ r


, (b) 
S

d∫∫ S , (c) 
S

dS∫∫  and (d)
C

dr∫ .

6. Show that curl(xa) = i × a where a is a constant vector.

7. Calculate the divergence of the vector field 3r2r at the 
point r = (0, 2,1).

8. Find the divergence of the vector field (yz, xy2z, xyz2).

9. Find the curl of the vector field (x, xz, xy).

10. Show that ∇(|	r |2) n = 2n(|	r |2)n−1r where r = xi + yj + zk.

11.  If A = (x2 − y2, y2 − z2, z2 − x2) and Q = x + y + z, find  
∇ · (QA) (the divergence of QA) at (1, 0, 1).

12.  Show that the curl	of k sin(k · r) is identically zero if k is a 
constant vector.

13.15. PROBLEMS

1. State Stokes’s theorem and use it to show that

( ) 2 ,
C

d Ap× ⋅ =∫ A r r


 where C is a unit circle spanned by a surface normal to the 
constant vector A.
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 Use the above result to interpret the geometrical meaning 
of the integral

1
.

2 C
d×∫ r r

2. Calculate the integral over the surface of a cube whose 
corners are located at (0, 0, 0), (0, 2, 0), (0, 0, 2), (2, 0, 0),  
(0, 2, 2), (2, 0, 2),(2, 2, 0) and (2, 2, 2) of the vector field

B = (x2 + y2, y2 + z2, z2 + x2).

 Calculate the divergence of B and verify that its integral 
over the volume enclosed by the cube above has the same 
value as the flux through the surface.

3. State Gauss’s theorem and use it to evaluate

( )
V∫

2div ,r dVr

 where r = (x, y, z) and the integral is taken over a unit cube 
with its center at the origin and sides parallel to the axes.

4. State Gauss’s theorem and verify it for the vector field  
(xn, yn, zn) for a unit cube whose surface normals are paral-
lel to the x-, y- or z- axes and with its center at the origin. 
(Assume n is an odd positive integer.)

5. Prove that the volume of a solid is given by

⋅∫r S1
,

3
d

 where r is the position vector of any point on its surface and 
dS is the vector element of area of the surface. Show that 
the expression is correct for a cube of side a, with its center 
at the origin and sides parallel to the axes.





APPENDIX A
PREREQUISITES

This appendix contains some basic facts and methods that will be 
review for most students, as well as some useful reference material. 
Consult it as necessary.

A.1. NUMBERS, FUNCTIONS, AND PROOFS 

Real Numbers
Real numbers are values that represent a quantity along a line. 

Imagine each real number as a point on a line with the negatives to 
the left of zero and the positives to the right. There are two types of 
points: rational numbers that can be represented as fractions or as 
either finite or recurring decimals and irrational numbers that are 
not fractions and are represented by an unending and non-repeating 
decimal expansion.

There is one point about the decimal expansion of real numbers 
that you may need reminding of: the recurring expansion 0.999999  
(the bar shows that the 9 repeats forever) is the same as 1.00000,  
and similarly for other numbers with recurring 9s. (You can see why, 
once you try adding something to 0.999999,  such as 0.00001 or 
0.0000001. There is nothing you can add that does not give a num-
ber that exceeds 1.)



498 • Mathematical Physics

Functions
A function of a real variable is a rule that assigns a real num-

ber to each permitted value of the variable. For example the square 
function x2 assigns the square of x for any real number x. We often 
write y = f (x) for a function of x. Here x is the independent variable 
and y the dependent variable.

Proofs
You need to be quite clear about the notion of proof in mathemat-

ics. A finite number of verifiable instances of a general result does not 
constitute a proof. Take the following example, the expansion of

(1 + x)n = 1 + nx + ... ,

where we want to prove that the coefficient of x in the expansion is 
n. It is obviously true for n = 1. For n = 2 we can get the result by 
explicitly multiplying out (1 + x)(1 + x) = 1 + 2x + x2. You might see 
how to go on to verify the result for n = 3. But we cannot prove that 
the result is true in general by enumerating instances, because we 
might eventually come across a value of n for which the result does 
not hold. For example, take the (incorrect) statement that every 
even number, 2n, is followed by a prime number. This is true for  
n = 1, 2 and 3 where, 2n = 2,4 and 6, which are followed by 3, 5, and 
7, but it is clearly not true for n = 4 since 2n = 8 is followed by 9, 
which is not prime.

There are various valid methods of proof in mathematics. One 
example is proof by mathematical induction.

Example A.1 Show that (1 + x)n = 1 + nx + ... .

We want to show that

(1 + x)n = 1 + nx + ...,

for n = 1,2,3,4, . . . This result is clearly true for n = 1. We shall 
assume that it holds for n = 2, 3, . . . up to some general n, then 
consider (1 + x)n+1.

(1+ x)n+1 = (1+ x)(1 + x)n,
= (1 + x)(1 + nx + ...).
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A.2. NECESSARY AND SUFFICIENT CONDITIONS

The distinction between what is necessary for a result to be true 
and what is sufficient is sometimes important. It is best approached 
through some examples:

•	 For	x2 > 1 to be true it is sufficient that x > 1 but not neces-
sary (x could also be < −1).

•	 For	x2 < 1 to be true it is necessary that x < 1, but it is not suf-
ficient (x must also be > −1).

•	 For	x1/2 > 1 it is both necessary and sufficient for x > 1.

Suppose that x > 1; then it follows from the first of the above 
statements that x2 > 1.

Suppose x < 1; then it does not follow that x2 < 1 (because according 
to the second statement x < 1 is necessary but not sufficient). Another 
way of thinking about this is in terms of the direction of implication:

•	 x > 1 implies x2 > 1 so x > 1 is a sufficient condition (‘‘suffi-
cient’’ to imply the result).

•	 x < 1 is implied by x2 < 1 so the result x < 1 is a necessary 
consequence.

Then, multiplying out the parentheticals and collecting like 
terms we find

(1 + x)n+1 = (1 + nx + ... + x + nx2 + ...), 
= 1 + (n + 1)x + ....

So if (1 + x)n = 1 + nx + ... is true for n we have shown that it is 
true for n + 1. But we know that it is true for n = 1. So it must 
be true also for n = 2, 3, . . . and so on for all n.

This method (assuming the result for n, deduce it for n + 1; 
check it for n = 1) is called proof by induction.
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A.3. LOGARITHMS

We define the function y = loga x (‘‘ the logarithm to the base a of x’’) 
for x > 0 and a > 0, as the number, y, satisfying the relation x = ay..i.e. the 
log of a positive number is the power to which the base must be raised 
to get that number.

For x > 0, y = loga(x) if x = ay.

Example A.2 For example,

(i) log10 (10) = 1 (put a = 10, x = 10, then 10 = 101 so y = 1) 
and similarly log a a = 1,

(ii) log10 (10n)= n,

(iii) log10 (0.1) = −1 (because 0.1 = 1/10 = 10−1).

Example A.3 Show that log(x1x2) = log(x1)+log(x2), and deduce 
that log(1/x) = − log(x).

Let log(x1) = y1, log(x2) = y2 and log(x1x2) = y. Then, using the 
definition of log, we can write

1 2
1 2 1 2, and .y y yx a x a x x a= = =

Then

1 2 1 2
1 2 .y y y y yx x a a a a+= = =

So, by examining the exponents we have that

y = y1 + y2.

To find values of log a(x) for more general values of x you will 
need to use a calculator. Usually calculators have ‘‘log’’ meaning 
log10, and ‘‘ln’’ meaning log e (see Chapter 2) but you can get from 
these to any base (see below). In this section, for formulae that are 
true in any base we will omit explicit reference to the base and just 
write log x.
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The formula for the logarithm of a product is true in any base. 
Obviously it follows from Example A.3 that log(x2) = 2 log(x) and 
similarly

log(xa) = a log(x)

for any a.

Finally, substituting for y, y1 and y2 we obtain the required 
result that

log(x1x2) = log(x1) + log(x2).

Now for the second part. We know a0 = 1 and taking logs of 
both sides we get 0 = log(1). Therefore

log(x × (1/x)) = log(1) = 0.

Using the result that log(x1x2) = log(x1) + log(x2) we can then 
therefore write that

log(x) + log(1/x) = 0

and hence,

log(1/x) = − log(x). 

This is a useful result that is worth remembering.

Example A.4 Change of Base

Show that log a(x) = (log a b)(log b x) and that ( ) log
log

log
b

a
b

x
x

a
= .

First, we let y = log b x and w = log a b, then

x = by,
 b = aw.

Next, substituting for b = aw, we have

x = (aw)y,
 = awy.
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Taking logs of both sides gives

 log a x = wy.

Then, substituting for y and w we find the required result that

log a x = log a b × log b x.
 For the second part, we use the fact that b = aw, so

a = b1/w.

Taking logb of both sides gives

logb a = 1/w,
= 1/ loga b.

Then, substituting this into the result for the first part we have

= =
log

log log log .
log

b
a a b

b

x
x b x

a

Exercise A.1 By using logs on your calculator find

(i) 3 5  

(ii) 1.254 × 0.378 

(iii) 1.254/0.378.

Exercise A.2

(i) If a plot of log(y) against log(x) is a straight line of slope k 
show that y = Axk for some constant A.

(ii) Express log(xx) in terms of x and log(x).

(iii) Find log3(5.2).

A.4. TRIGONOMETRIC FUNCTIONS

h

a

o

q
 FIGURE A.1: Right angle triangle; h is the length of the hypotenuse, a 
the adjacent side and o the opposite side with respect to the angle q.
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The elementary definition of the functions sin, cos, and tan gives 
them in terms of the ratios of sides of a right-angled triangle,

( ) ( ) ( )sin , cos and tan .
o a o
h h a

q q q= = =

From this definition various relations can be deduced. For example,

( ) ( )
( )

( ) ( )2 2sin
tan and sin cos 1.

cos
q

q q q
q

= + =

However, the elementary definition in terms of a simple right 
angle triangle has limitations – and more convenient and technical 
definitions exist. We will not go through these here, but simply sup-
ply some relevant and general results.

First, the extension to all angles (0° ≤ q ≤ 360°) is most easily 
represented by showing the signs of the sides of the triangle in each 
of the quadrants (see Figure A.2). These follow the obvious pattern 
of coordinate axes. So the overall signs of each of the functions are 
as in Figure A.3.

+ +
+-

- -
-

+
FIGURE A.2: The signs of the sides of the tri-
angles for construction of the trigonometric 
functions follow the pattern of the coordinate 
axes.

For example, sin(135°) = sin(45°), sin(192°) = −sin(12°) and 
sin(307°) = −sin(53°). Also, cos(135°) = −cos(45°), cos(192°) = −cos(12°) 
and cos(307°) = cos(53°).

In general,

sin(−q) = −sin(q),
 cos(−q) = cos(q).



504 • Mathematical Physics

Radians and Degrees
Note that in general mathematical relations are given with the 

angles measured in radians, not in degrees. The relation is that 2p 
radians is equivalent to 360°. Thus to convert an angle A in degrees 
to the same

+ +

- -
sin

+

+

-

-

cos

-+

+-

tan

q

q

q

FIGURE A.3: The signs of the trigonometric functions in the various quadrants.

angle a in radians we have

2 360
and conversely .

360 2
A Aa π

= × = α×
π

Thus p/4 corresponds to 45°, p/6 to 30° and p/3 to 60°.

Some very useful exact values you are expected to remember are

( )

( )

π π π π       = = = = =       
       
π π π π       = = = = =       

       

1 1 3
sin 0 0, sin , sin , sin , sin 1,

6 2 4 3 2 22

3 1 1
cos 0 1, cos , cos , cos , cos 0,

6 2 4 3 2 22
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and, for any angle q,

( )sin cos .
2

q qπ = −  

A graphical representation of these functions is given in  
Figures A.4 (a) and (b).

π

−1
.0

−0
.5

0.
0

0.
5

1.
0

2π3π/2

sin q cos q
tan q

q

(a)

π 2π

−6
−4

−2
0

2
4

6

π/2 3π/2
q

(b)

π/2

FIGURE A.4: (a) The sin and cos functions. (b) The tan function.

Combining Angles
We can combine angles:

sin(a + b) = sin(a) cos(b) + cos(a) sin(b),
cos(a + b) = cos(a) cos(b) − sin(a) sin(b),

and

( ) ( )

( ) ( )

a b a ba b

a b a ba b

+ −   + =    
   

+ −   + =    
   

sin sin 2sin cos ,
2 2

cos cos 2cos cos .
2 2

And also split them up:

sin(2a) = 2 sin(a) cos(a),
cos(2a) = 2cos2(a) −1 = 1 − 2sin2(a).

Exercise A.3 Show that

(i) sin(p + a) = −sin(a),

(ii) sin(p − a) = sin(a).
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It is not overly important to remember these formulae 
exactly, although it is often convenient to have done so. However, 
it is absolutely vital that you know these formulae exist and know 
their general form.

Related Functions
Here are some related trigonometrical functions and the rela-

tions between them that are important to know:

( )
( )

( )
( )

( )
( )

1 1 1
sec , cosec , cot ,

cos sin tan
a a a

a a a
= = =

where

1 + tan2 (a) = sec2 (a), 1 + cot2 (a) = cosec2(a).

Finally, another useful result (see Exercise A5) to remember is

a sin(a) + b cos(a) = A sin(a + φ),

where A = (a2 + b2)1/2 and φ = tan−1(b/a).

Exercise A.4 Use your calculator to find

(i) sin(135°) 

(ii) tan(15p/4) 

(iii) cosec(11p/8).

Exercise A.5 By using the identity for sin(a + φ) find A and φ 
such that a sin(a) + b cos(a) = A sin(a + φ).

Exercise A.6 Using the identities given, prove that

(i) ( ) ( )
( )2

2 tan
tan 2 ,

1 tan
a

a
a

=
−

(ii) ( ) ( ) ( ) ( )1
sin sin 2sin for 0 .

2
a b a b a b + ≤ + ≤ + ≤ π  
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Example A.5 Simplify 
3 22 9 4 20

2 5
x x x

x
+ + −

+
.

One basic way to divide a polynomial is to guess the form of the 
answer and compare coefficients. In this question the answer 
must start with an x2 and hence will be of the form ax2 + bx + c + 
R(x) where the remainder, R(x), will be of the form d/(2x + 5).

We can therefore write

( )+ + −
= + + +

+ +

3 2
22 9 4 20

2 5 2 5
x x x d

ax bx c
x x

so

 2x3 + 9x2 + 4x − 20 = (2x + 5)(ax2 + bx + c) + d 
 = 2ax3 + (5a + 2b)x2 + (5b + 2c)x + 5c + d. 

Now we can equate the coefficients, starting with the highest 
power of x. This allows the unknowns to be read off directly: 
equating the coefficients of x3 gives a = 1; equating the 
coefficients of x2 gives b = (9 − 5 × 1)/2 = 2; then, similarly,  
c = (4 − 5 × 2)/2 = −3 and d = (−20 − 5 × (−3)) = −5. Therefore

+ + −
= + − −

+ +

3 2
22 9 4 20 5

2 3 .
2 5 2 5

x x x
x x

x x

Exercise A.7 Using the method above, or your own preferred 
method, obtain the following results:

(i) 
4 3 2

3 23 14 9 20 1
2 3 ,

3 7 3 7

x x x x
x x

x x

+ − + +
= − + −

+ +

(ii) 
2

2 2

3 5 3 1
1 ,

4 4

x x x

x x

+ + +
= +

+ +

(iii) 
3 2

2 2

4 1 1
1 .

3 2 3 2

x x x
x

x x x x

+ + −
= + +

+ − + −

A.5. DIVISION OF POLYNOMIALS

There are several ways to divide a polynomial of higher degree 
by one of lesser degree. Here we cover one simple example but you 
will find many other methods and examples in different textbooks.
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A.6. PARTIAL FRACTIONS

A rational function is a polynomial divided by another polyno-
mial, i.e. a fraction with polynomials as numerator and denomina-
tor. To find the sum (or difference) of two rational functions we put 
them over a common denominator. For example:

( ) ( )
( ) ( )
( )( ) ( )( )
+ − −

− = =
− + − + − +

3 21 1 5
.

2 3 2 3 2 3
x x

x x x x x x

The reverse process is called expressing a rational function in 
partial fractions.

Example A.6 Express 
( )( )

1
2 3x x− +

 in partial fractions.

We begin with

( )( ) ( ) ( )
= +

− + − +
1

.
2 3 2 3

a b
x x x x

To find a multiply through by the parenthetical (x − 2),

( )
( )
( )
−

= +
+ +

21
.

3 3
x b

a
x x

The two sides should be equal for all x, including x = 2 which 
will get rid of the messy term in b. By inserting x = 2 we find 
a = 1/5. Similarly, to find b we multiply by (x + 3) instead:

( )
( )
( )

b
+

= +
− −

31
.

2 2
x a

x x

We choose x = −3 to get rid of the term in a. This gives b = −1/5.

Hence we have the solution

( )( ) ( ) ( )
= −

− + − +
1 1 1

.
2 3 5 2 5 3x x x x

Exercise A.8 Find 
4 3 2

2

5 11 13 7
.

2 3
x x x x

x x
+ + + +

+ +
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Exercise A.9 Express 
( )( )

3
4 1x x+ −

 in partial fractions.

Exactly the same method works if the numerator is any polyno-
mial of degree less than that of the denominator:

Exercise A.10 Use the method of Example A.6 to express 

( )( )4 1
x

x x+ +
 in partial fractions.

If the numerator is a polynomial of degree greater than or equal 
to that of the denominator, then a rearrangement equivalent to long 
division with remainder must first be carried out.

Example A.7 Express 
( )( )

+ +
+ +

2 6 4
4 1

x x
x x

 in partial fractions.

We have that

( )( )
( )

( )( )

( ) ( )

+ + + +
=

+ + + +

+ + +
=

+ +

= +
+ +

= + −
+ +

2 2

2

2

2

6 4 6 4
,

4 1 5 4

5 4
,

5 4

1 ,
4 1

4 1
1 .

3 4 3 1

x x x x
x x x x

x x x

x x
x

x x

x x

This is the easiest way to obtain the solution. Alternatively, if we 
had chosen different values of x to substitute in when finding  
a and b we would have obtained a pair of simultaneous equations 
for a and b, which we could then solve to find a and b.



510 • Mathematical Physics

A.7. SERIES

Arithmetic Series
An arithmetic sequence (or arithmetic progression) is a succes-

sion of terms, each of which differs from the previous one by adding 
a constant.

For example

 1, 3, 5, 7, 9,.. .  (A.1)

The sequence may be finite or infinite. If the sequence starts at 
a and each term differs from the previous one by a constant d then 
the nth term is

an = a + (n − 1)d,

giving a1 = a, a2 = a + d, a3 = a + 2d, and so on. The unevaluated sum 
of the terms of a sequence is called a series. For example, the series 
obtained from the sequence (A.1) is

 1 + 3 + 5 + 7 + 9 + ... .  (A.2)

The sum of the first N terms of an arithmetic sequence is

( )( )
= =

= = + −∑ ∑
1 1

1 .
N N

N n
n n

S a a n d

We can evaluate the sum of the first N terms as follows. Write 
out the sum in two different ways, first with the terms in ascending 
order, then in descending order.

SN = a + (a + d) + (a + 2d) + ... + (a + (N − 2)d) + (a + (N − 1)d), 
SN = (a + (N − 1)d) + (a + (N − 2)d) + ... + (a + 2d) + (a + d) + a,

where aN = a + (N − 1)d is the final term in the sequence. If we add 
these two together we get

2Sn = (2a + (N − 1)d) + (2a + (N − 1)d) + ... + (2a + (N − 1)d) 
 = N (a + aN). 

So

( )= + =
2 2N N

N N
S a a  (first term + last term).
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For example, in the case of the series (A.2) we have a = 1 and 
d = 2. Therefore a10 = 19 and S10 = 100.

If there are an infinite number of terms the series will diverge. 
If d is positive then SN increases without limit as N increases; if d is 
negative SN will decrease without limit.

Geometric Series
A geometric sequence (or geometric progression) is a succes-

sion of terms in which each term differs from the previous one by a 
multiplicative constant. For example

 1, (1/2), (1/4), (1/8),(1/16),... .  (A.3)

The sequence may be finite or infinite. If the sequence starts at 
a and each term differs from the previous one by a constant r then 
the nth term is

an = ar n−1

giving a1 = a, a2 = ar, a3 = ar2, and so on. The sum of the terms 
is called a geometric series. The series obtained from the sequence 
(A.3) is

 1 + (1/2) + (1/4) + (1/8) + (1/16) + ... .  (A.4)

The sum of the first N terms of a geometric sequence is

−

= =

= =∑ ∑ 1

1 1

.
N N

n
N n

n n

S a ar

We can evaluate the sum of the first N terms as follows. Write 
out the sum SN and also rSN,

SN = a + ar + ar2 + ar3 ⋯ + arN-1,
rSN = ar + ar2 + ar3 + ar4 ⋯ + arN,

and then subtract the second from the first. The only terms that do 
not cancel are the first term of the first equation and the last term of 
the second equation

(1 − r)SN = a − arN.

The sum of the first N terms can therefore be written as

( )−
=

−

1
.

1

N

N

a r
S

r



512 • Mathematical Physics

For an infinite sequence, if |r| < 1 we have limN→∞ rN = 0, and so 
the sum tends to

 
∞

=

= =
−∑

1

.
1

n

n

a
S ar

r
 (A.5)

For example, in the case of the series (A.4) we have r = 1/2 and 
a = 1. Therefore S = 2. For | r | ≥ 1 the sum Sn either diverges with 
N or it oscillates with increasing amplitude.



alpha a A

beta b B

gamma γ Γ

delta d ∆

epsilon e E

zeta z Z

eta h H

theta q Θ

iota i I

kappa k K

lambda l Λ

mu m M

nu n N
xi x Ξ

omicron o O
pi p Π

rho r R
sigma s Â

tau t T
upsilon t ϒ

phi φ Φ

chi c C
psi y ψ

omega w Ω

APPENDIX B
THE GREEK ALPHABET





INDEX

Active transformation, 186, 191
Adjoint matrix, 180
Algebraic methods, 84
Algebraic operations, 192
Algebraic rules, 111
Analytic fucntion, 261
Angular momentum, 139, 141
Anti-derivatives, 18
Antisymmetric matrices, 160–161
Arbitrary function, 49, 387
Arbitrary point, 357–358
Arcsin, 11, 70
Argand diagram, 247–252,  

255, 262
Associative law, 158
Asymptotes, 79
Asymptotically equivalent, 

94–96
Asymptotic approximations, 103
Auxiliary equations, 213, 215

with complex roots, 277–281
with repeated roots, 

215–217
Axially symmetric, 321

Back-substitution, 154
“Bac minus cab” rule, 134
Basis vectors, 115–118
Beats, 397–400
Bessel functions, 231–232

Binomial coefficients, 52
Binomial expansion, 55

binomial series, 53–54
definition, 50–51
factorials, 51–53

Boundary conditions, 267–277, 
289–290

Carrier waves, 399
Cartesian coordinate systems, 

320, 324, 455, 491
Cauchy-Riemann relations, 261
Cauchy’s integral formula, 261
Chain rule, 65, 228, 350, 

367–369,  
372, 380, 383, 386, 459. 
See also “Function of a 
function”

consistency with, 369–371
Closed form expression, 99
Coefficients, 207
Column vector, 149, 150
Commute, 157–158
Complementary functions, 223, 

224, 233, 271, 284
Complex algebra, basic rule  

of, 239
Complex conjugate, 240–241, 

283
Complex exponential, 252–255
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Complex Fourier series, 
436–438

Complex impedance, 292–293
Complex inhomogeneous term, 

282–289
Complex numbers, 235–238

Argand diagram, 247–249
argument of, 249–252
complex exponential, 252–255
De Moivre’s theorem, 256–257
division, 242–243
inverse of, 243
modulus, 249–252
operations, 239–243
polar representation, 251
product, 243
quadratic equation, 244–247
real polynomial, roots of, 

258–259
square root, 244, 245, 246
unity, roots of, 258
variables, 260–262

Complex polynomials, roots of, 
259–260

Conservation of energy, 413
Conservation of probability, 413
Constant coefficients, 79, 211, 

214, 215, 218, 276
Constants, 305
Continuous functions, 17, 30–32
Contour integration, 262
Contour lines, 342
Convergence, 93, 101–102
Convolutions theorem, 443–445
Cosh functions, 71
Cosine formula, 136
Cosine series coefficients, 

430–431
Cramer’s rule, 174, 178, 179
Cross product, 121–122
Cubic polynomials, 79, 80
Curl of vector field, 470–473
Cylindrically symmetric, 321

Cylindrical polar coordinates, 
320–321, 322–323, 335

D’Alembert’s formula, 394
Deconvolution theorem, 

445–446
Definite integrals, 28, 29, 32, 

319–320
Del operator, 458
De Moivre’s theorem, 256–257, 

262
Dependent variable, 348
Derivatives

definition, 1–4
exponential, 64–66
of “function of a function,” 

5–7
higher order, 14–15
implicit differentiation, 11–12
of integrals, 33–35
piecewise differentiable 

function, 12–14
product and quotient rule, 

8–10
standard, 5

Determinants, 167–169
properties, 169–174

Differential equations
application to, 428–429
arbitrary constant in, 204
auxiliary equations with 

complex roots, 277–281
auxiliary equation with 

repeated roots, 215–217
boundary and initial 

conditions, 267–277, 
289–290

with complex coefficients, 
281–282

complex impedance, 292–293
complex inhomogeneous 

term, 282–289
definition, 199
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examples, 200–201
finding solutions, 209–211
first order, 203–205, 226
first order equations, 

291–292
Green functions, 296–297
homogeneous linear 

equations, 207–209, 
211–215

inhomogeneous, 207–209, 
217, 222–226

integrating factor method, 
226–229

linearity vs. non-linearity, 
205–207

order of, 200–201
particular integrals, 217–222
solving, 201–202
special functions, 230–233
types, 201

Differentiation
implicit, 352
standard rules, 343

Diffusion equation, 381
Directional derivatives, 346–347
Discontinuous functions, 

30–32, 439
Discrete symmetries, 192
Dispersive medium, 400
Distributive law, 133
Divergence of vector fields, 

467–469
Divergence theorem, 93, 101-102,  

482–486, 492
Dot product, 118–121
Double integrals, 304, 306, 308

Eigenfunctions, 407, 414
Eigenvalues, 147, 181–186, 192, 

406–408, 414
Eigenvectors, 147, 181–186, 192
Einstein summation 

convention, 140

Electric circuit theory, 280
Electromagnetic field, 379
Electromagnetic radiation, 310
Electro-magnetism, 478
Elementary functions, 30

binomial expansion. See 
Binomial expansion

definition, 49
equilibrium point, 59–62
exponential function, 63
integrals of, 18–20
inverse function, 63–64
Maclaurin series, 55–57
Taylor series, 58–59

Equation of a line, 125–127, 141
Equation of a plane, 127–129, 141
Equilibrium point, 59–62
Equivalent system, 154
Estimates of integrals, 32–33
Euler’s equation, 252, 278, 280, 

285
Even functions, 85–87
Exact differential, 366–367
Exponential functions, 49, 63, 

67, 72, 252

Factorials, 51–53
Finite string, 402
First order equations, 291–292
First order separable equations, 

203–205
Fixed vectors, 112
Fluid mechanics, 478
Fourier integrals, 440–441
Fourier methods, 419, 420
Fourier series, 101

complex form of, 436–438
convolutions theorem, 

443–445
cosine series coefficients, 

430–431
deconvolution, 445–446
definition, 419
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differential equations, 
application to, 428–429

even and odd functions, 
433–435

Fourier transforms. See 
Fourier transforms

full range series, 435–436
half range sine series, 

420–421, 422
Laplace transform, 446
numerical series, 432
periodic extension of, 433
properties, 439–440
results, 422–425
sine series coefficients, 

421–422, 424, 429
standard integrals, 449–450
wave equation, application 

to, 425–428
Fourier’s theorem, 421
Fourier transform, 440–442, 448

calculating, 442–443
Fraktur typeface, 238
Free vectors, 112
Fubini’s theorem, 311
Full range series, 435–436
“Function of a function” rule, 

5–7, 35, 39, 350–351, 367
Functions

approximation, 94–96
area under a graph, 29
asymptotic approximations  

of, 103
complementary, 271
continuous, 17, 30–32
cosh, 71, 94
definite integrals, 28, 29
derivatives of, 1–4
discontinuous, 30–32
elementary, 18–20, 49
even and odd, 85–87, 

433–435
exponential, 49, 63, 67, 252

Gamma, 39
gradient, 458–460
green, 296–297
hyperbolic, 67–69, 254
integrals of combinations, 

20–21
integration, 21
inverse, 63–64, 69–71
inverse hyperbolic, 71
of many variables, 348
maxima/minima, 15
mod, 13–14
piecewise differentiable, 

12–14
piecewise linear, 13
polynomial, 59, 79–81, 103
quadratic, 77–78
rational, 27, 81–82, 103
sinh, 71
stationary point, 15–17
symmetry of, 85–87
Taylor series, 58–59
trigonometric, 4, 49, 68, 252
of two variables, 341–344

Fundamental theorem of 
algebra, 259

Gamma function, 39, 94
Gaussian function, 442–444
Gaussian integral, 67
Gauss’s divergence theorem, 

482–486
Geometric progression, 98
Gibbs phenomenon, 439
Graphical method, 84
Graphical solution of 

inequalities, 83–85
Green functions, 296–297
Group velocity, 400–402

Half range cosine series, 
430–431

Half range sine series, 420–421
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Harmonic waves, 397, 401
Hermite polynomials, 232
Higher derivatives, 349–350
Higher order derivatives, 14–15
Homogeneous linear equations, 

179, 207–209, 211–215, 
277, 381

Hyperbolic functions, 67–69,  
72, 254

Identity matrices, 159–160
Implicit differentiation, 11–12,  

39, 352
Incident energy flux, 410
Incremental approximation, 460
Indefinite integral, 18, 28, 67, 

211
Independent variable, 69, 201, 

269, 275, 348
Indeterminate forms, 89–91
Index notation, 140–141, 

490–491
Inequalities

graphical solution of, 83–85
triangle, 120

Inexact differentials, 367
Infinite limits, 92
Infinite series, 97–103
Infinite strings, 393–395, 402
Inhomogeneous linear 

differential equations, 
207–209, 217, 222–226

Initial conditions, 267–277, 
289–290

Initial transverse velocity, 
391–393

Integrals, limits of, 92–94
Integrating factor method, 

226–229
Integration, 18–20

of exponential functions, 67
inequality, 32
logarithmic, 21

methods, 40
over cylindrical surfaces, 

323–324
over rectangles in plane, 

307–310
over regions in plane, 

316–317
over spherical surfaces, 

327–329
by parts, 25–26, 40
of rational function, 27
by substitution, 21–25

Inverse functions, 63–64, 69–71
Inverse hyperbolic functions, 71
Inverse of 2 × 2 matrices, 

165–167
Inverse sine function, 11
Inverses matrices, 161–165

formula for, 179–181
Inverse square law, 351
Irrational numbers, 235–236
Iterated integral, 304

Kronecker delta, 140, 421

Laguerre polynomials, 232
Laplace’s equation, 381, 405, 

408
Laplace transforms, 446
Laurent series, 261
Legendre polynomials, 232–233
Leibniz rule, 8
Leonard-Jones potential, 61
Level curves, 342, 462–464
L’Hôpital’s rule, 89, 91–92, 103
Lie groups, 192
Limits, 87–88

indeterminate, 89
of integrals, 92–94

Linear algebra, 147
Linear combinations, 113, 141
Linear dependence vectors, 

114–115
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Linearity differential equations, 
150, 381, 205–207

homogeneous, 179, 211–215
inhomogeneous, 217, 

222–226
solution, 153–156
3 × 3 linear system, 177–178
2 × 2 linear system, 174–177

Linearly independent vectors, 115
Line segments, 112–113
Logarithmic integration, 21
Lorentz group, 191
Lower triangular matrix, 154

Maclaurin series, 55–57, 58, 64, 
65, 72, 356

Matrices, 147–149
adjoint, 180
determinants, 167–169
properties, 169–174

eigenvalues and 
eigenvectors, 181–186

identity, 159–160
inverse of 2 x 2, 165–167
inverses, 161–165
linear equations systems, 

150, 153–156
orthonormal/unitary, 188
products, 156–159
representation, 149–152
square, 181, 188
symmetric and 

antisymmetric, 160–161
3 × 3 linear system, 177–178
transformations, 186–190
groups, 191–192

transpose of, 160
2 × 2 linear systems, 174–177

Matrix notation, 151
Matter waves incident, 412–414
Maximum rate of change, 

460–462
Minors, 168

Mod function, 13–14
Multiple integrals, 335

cylindrical polar 
coordinates, 320–321

definite integral, 319–320
order of integration, 

313–316
over irregular regions, 

310–313
over rectangles in plane, 

307–310
over regions in plane, 

316–317
over spherical surfaces, 

327–329
polar coordinates, 316–317
repeated integrals, 303–307
sketching surfaces, 333–335
solid angle, 329–333, 335
spherical polar coordinates, 

324, 325–326
volume integrals. See 

Volume integrals
Multiple products, 123–125

Natural logarithm, 4
Negative divergence, 469
Non-coplanar vectors, 115, 124
Non-dispersive, 401
Non-linearity differential 

equations, 205–207
Non-negative square root, 70
Non-singular, 173
Non-zero initial velocity, 391
Normal modes, 405
Notation, 151, 152
Numerical series, 432

Odd functions, 85–87
Order of integration, changing, 

313–316
Orthogonal coordinate system, 

491
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Orthonormal basis, 116
Orthonormal matrices, 188, 192
Oscillatory motion, 419

Parallelogram law, 113
Partial derivatives, 344–346

application of, 353
arbitrary point, 357–358
chain rule, 367–369
functions of two variables, 

341–344
higher derivatives, 349–350
notion of, 348
with respect to parameter, 

353–355
stationary points, 359–365
total differential, 365–366

Partial differential equations 
(PDEs), 379

beats, 397–400
general initial conditions, 

formula for, 393–395
general solution derivation, 

386–387
group velocity, 400–402
infinite string, 393–395
initial transverse velocity, 

391–393
matter waves incident, 

412–414
in physics, 380–382
reflections at discontinuity, 

408–411
semi-infinite string, 395–396
separation of variables, 

402–405
simple harmonic waves, 397
string initially at rest, 

388–391
wave equation. See Wave 

equation
Partial sums, 98, 100
Particular integrals, 217–222, 223

Passive transformation, 186, 191
PDEs. See Partial differential 

equations
Perfect differential. See Exact 

differential
Permutation symbol, 140
Phase velocity, 386
Piecewise differentiable 

function, 12–14, 31, 32
Piecewise linear functions, 13
Polar coordinates, 316–317

cylindrical, 320–323
Polynomial function, 59, 79–81, 

103
Power series expansions, 49
Precise rule, 94
Probability theory, 67
Product rule, 8–10, 39
Pure imaginary system, 238

Quadratic equation, 236, 
244–247, 364

Quadratic function, 77–78
Quotient rule, 8–10

Radioactive decay law, 211
Rational functions, 27, 81–82, 103
Rational numbers, 235
Real number system, 236, 238
Real polynomial, roots of, 

258–259
Reciprocal vector, 124
Rectified half wave, 435
Recurrence relation, 38. See 

Reduction formula
Reduction formula, 35–39, 39, 

40, 94
Reflection coefficient, 411, 413
Reflection matrix, 190
Related functions, 49
Repeated integrals, 303–307
Repeated roots, auxiliary 

equation with, 215–217



522 • Mathematical Physics

Resultant vector, 112
“Right hand screw rule,” 473
Roots of unity, 258
Rotation matrix, 186–190, 191
Row vector, 149

Sarrus’s rule, 169
Scalar, multiplication by, 151
Scalar field, 455, 456, 460
Scalar (dot) product, 113, 

118–121
component form, 131–132
of vectors, 460

Scalar triple product, 123–124, 
133–134, 135, 141

Schrödinger equation, 381, 405, 
408, 412

Semi-infinite string, 395–396, 408
Separation of variables method, 

402–405
Sequence, 96–97
Series, 96–97, 100
Set of coefficients, 149
“Sign” function, 13
Simple harmonic motion, 268
Simple harmonic waves, 397
Simpler integral, 21
Simultaneous equations 

method, 156
Sine series coefficients, 421–422
Sinh functions, 71
Sketching surfaces, 333–335
Solid angle, 329–333, 335
Spherical polar coordinates, 324, 

325–326, 328, 335
Spherical triangle, 136
Square matrix, 152, 181, 188
Standard derivatives, 5
Standard form, 238
Standard integral, 21
Standard rules, 343
Stationary points, 15–17, 40, 

359–365, 372

Stirling’s formula, 95
Stokes’s theorem, 486–490, 493
Symmetric matrices, 160–161, 186
Symmetry of functions, 85–87

Taylor series, 58–59, 66, 72, 230, 
341, 355–357, 460

Taylor’s theorem, 359, 363
Tensor product, 118
Three-dimensional space,  

115, 116
3 × 3 linear equations systems, 

177–178
Torque, 139, 141
Total differential, 365–366
Transformation matrices, 

186–190
groups, 191–192

Transmission coefficient, 411, 413
Transverse acceleration, 380
Transverse velocity, 386
Triangle inequality, 120
Trigonometric functions, 4, 40, 

49, 68, 230, 252
Triple product

scalar, 123–124, 133–134
vector, 125, 134–135

Triplet of numbers, 130
Trivial solution, 179
2 × 2 linear equations systems, 

174–177

Unitary matrices, 188
Unit matrix, 159
Unit vectors, 116, 118, 120
Upper-triangular matrix, 154

Variables
dependent, 348
independent, 348

Vector
basic properties, 112–114
components, 129–130
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definition, 111
equation of a line, 125–127
equation of a plane, 127–129
identities, 135–138
index notation, 140–141
linearly independent, 115
magnitude, 114
multiple products, 123–125
multiplication, distributive 

law for, 122
non-parallel, 115
parallelogram law of, 111
physical science examples, 

138–140
product, 118
reciprocal, 124, 125
row and column, 149
scalar (dot) product,  

118–121
unit, 116, 118
zero, 114

Vector fields, 455–458
circulation, 478–481
curl of, 470–473
divergence, 467–469
flux, 473–477

index notation, 490–491
level surfaces, 462–464
maximum rate of change, 

460–462
normal to surface, 464–468
scalar field, 455, 456
Stokes’s theorem, 486–490
with zero curl, 473

Vector (cross) product, 121–122
component form, 132–133

Vector space, 115
Vector triple product, 125, 

134–135, 141
Velocities, 111
Volume integrals

cylindrical polar 
coordinates, 322–323

spherical polar coordinates, 
326–327

Wave equation, 379, 380, 381, 
407

application, 425–428
general solution of, 383–386

Zero vector, 114
















	Mathematical Physics_FM
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	BM
	Computational Physics_Index

